

Nuclei RISC-V Processor

NA900 Product Brief

Overall Introduction

Nuclei NA900 is a high-performance processor based on RISC-V architecture. NA900 features a dual-issue 9-stage in-order execution pipeline. NA900 is the 1st RISC-V CPU IP that achieves ISO 26262 ASIL-D product certificate. The certificate is accomplished together with Exida.

As a high-performance, **NA900** gives 2.78/5.99(legal/best) Dhrystone/MHz, 5.23 Coremark/MHz.

NA900 supports both instruction and data local memory (ILM/DLM) gives better real time processing capability. User can also configure instruction and data cache (I-Cache/D-Cache) to improve the performance of the overall subsystem.

NA900 supports **Dual-Core Lockstep Mode** for ASIL-D functional safety requirement with 99% single point coverage. Meanwhile, NA900 can be configured as **Dual-Core Split Mode**, with each core working separately on ASIL-B level, delivering higher performance. Split Mode **can be configured through software**, giving customer huge flexibility during system level design.

NA900 aims for automotive application and is already deployed in **Engine ECU, ADAS, Gateway and Lidar.**NA900 is comparable to ARM Cortex-R52.

High Performance Real-time Capability

RV32/64IMACFDP VBZfh

9-stage Pipeline

Support I/DCache

User Mode Supervisor Mode

Dual Core Lock Step Dual Core Split

System Bus

4-Wire JTAG
2-Wire cJTAG

Low Latency Interrupt

NA900 Feature

- ISO26262 ASIL-D product certified, excellent for Automotive and Functional Safety application;
- RV32IMACFDPB compatible, 9-stage in order dualissue pipeline;
- Support 64b AXI system interface, 32b AHB-Lite private peripheral interface and ILM/DLM interface;
- Double/Single Precision floating point and DSP Extension;
- Configurable ILM (Instruction Local Memory) & DLM(Data Local Memory) with ECC;
- Configurable I-Cache with Scratchpad mode & D-Cache with ECC;
- Configurable PMP and TEE (Trust Execution Environment) for system security;
- Support standard JTAG & cJTAG interface and Linux/Windows debug tools;
- Support standard RISC-V GNU toolchain and Linux/Windows dev environment (IDE)

NA900D Serires

Systematic Capability: ASIL D
Hardware Safety Integrity: ASIL D
in DCLS mode

World First ISO 26262 ASIL-D certified RISC-V
 CPU IP

NA900B Series

Systematic Capability: ASIL D
Hardware Safety Integrity: ASIL B

- Nuclei self developed Softwate Test Library for ASIL B application
- Fault Injection simulation FMEDA report for configurable design
- ASIL B support fot both split mode and singlecore mode
- Safety enhanced hardware for trade-off between diagnostic coverage and hardware cost

Functional Safety (ASIL-B & ASIL-D)

Providing STL(software test library)

DFF Parity/EDC

Comb logic

Parity/EDC
Generator

DFFs

Parity/EDC Check

Implementing error detection code (EDC) on core DFF. Selective coverage of architectural, pipeline or all DFF.

Implementing error correction code (ECC) on ILM, DLM, I/D-Cache with enhanced address and multi-bit error coverage

Implementing error detection code (EDC) on core boundary IO

The Dual-core lockstep cores executing the same code, then their outputs and key internal states are compared every cycle; Any mismatch will generate a fault by the comparison unit

Automotive Safety Integrity Levels

QM A B C D

Safety Package

FMEDA

0	Block / Subblock [<i>Drop-down</i>]:	Block / Component	Block / Component Group	High Level Block / Compone nt Group	λ _{permanent} [FIT]	Failure Wode (FW) for the block	FI distributi on permanent	FI distribu tion transiant
1	Master core	master core	_	_	4. 7720	All applicable failure mode of computation or communication execution caused by faults in the master core (100) logic	97.0%	99.0%
1	Master core	master core	_	_	4. 7720	Unexpected ECC error detection:1. Detect error when not expected (false alarm).2. Not detect a true ECC error.	1.0%	0. 5%
1	Master core	master core	_	_	4. 7720	Generate wrong ECC code to the SRAM write data bus	1. 1%	1.1%
1	Master core	master core	_	-	4. 7720	Unexpected SBE correction: 1. Do correction on correct data and result in data error. 2 missing a true SRE correction	1.0%	1.0%

		Top level safety requirements (TLSRs) on IP / IC Level	TLSR short	SPFM	LFM
	1	NA900 shall provide the required safe computation	TLSR 01	99.996%	99.784%
		NA900 shall protect the data integrity of all safety related SRAM Storage and transfer between core and SRAM.	TLSR 02	99.268%	98.885%
П	3	NA900 shall provide safe communication through the bus interfaces	TLSR 03	99.996%	99.784%
	4	NA900 shall be configured through external miscellaneous input signals, and correctly indicate the processor status through external miscellaneous output signals.	TLSR 04	99.996%	99.784%

Safety Manual

- 2 2. SEooC Overview
 - 2.1 2.1. Definition of Components as SEooC
 - 2.2 2.2. Processor Modes
 - 2.3 2.3. Top-Level Safety Requirements
 - 2.3.1 2.3.1. Performance Impact
 - 2.4 2.4. Top-Level Safe States
 - 2.5 2.5. Non-Functional Requirements
 - 2.6 2.6. Constraints and Assumption of Use
- 3 3. Safety Architecture
 - 3.1 3.1. Safety Status and Fault Signals
 - 3.2 3.2. Safety Measures
 - 3.2.1 3.2.1. Detection & Indication and Reaction Time
 - 3.2.2 3.2.2. Internal Safety Mechanism and Design Measures
 3.2.2.1.3.2.2.1. Safety Measure 1.1 INSEA DO
 - 3.2.2.1 3.2.2.1. Safety Measure 1: HWSM-DCLS3.2.2.2 3.2.2.2. Safety Measure 2: HWSM-SRAM-
 - 3.2.2.2 3.2.2.2. Safety Measure 2: HWSM-SRAM-PROT
 3.2.2.2 3.2.2.3 Safety Measure 2.1/O Postertion
 - 3.2.2.3 3.2.2.3. Safety Measure 3: I/O Protection HWSM-I-PROT, HWSM-O-PROT
 - 3.2.2.4 3.2.2.4. Safety Measure 4: Non safety Isolation HWDM-NSI-ISO
 - 3.2.2.5 3.2.2.5. Safety Measure 5: TSC Comparator HWSM-DCLS-TSC
 - 3.2.3 3.2.3. External Safety Mechanism
 - 3.2.3.1 3.2.3.1. Safety Measure 6: Watchdog Timer
 HWSM-FXT-WDG
 - 3.2.3.2 3.2.3.2. Safety Measure 7: External Check on Protected Output Signal HWSM-EXT-O-CHECK
 - 3.3 3.3. Assumption of Use for Safety Mechanisms
- 4 4. Integration Requirements
 - 4.1 4.1. IP configuration
 - 4.2 4.2. Configuration Parameters
 - 4.3 4.3. External Hardware Blocks
 - 4.4 4.4. Verification Activities of Integrator
 4.5 4.5. Additional Support From Nuclei

NA900 Memory Subsystem

900 Series supports local instruction and data memory: ILM (Instruction Local Memory) 和DLM (Data Local Memory), providing real-time processing capability:

- ILM and DLM can be configured from **128B-2GB**, allowing excellent flexibility;
- AHB-Lite interface and SRAM interface with customized address space.

900 Series supports Instruction Cache

- 2-way, 64B cache line structure
- Cache size from **8KB-64KB**
- Support cache line LOCK and INVAL operation

900 Series supports Data Cache

- 2-way, 64B cache line structure
- Cache size from **8KB-64KB**
- Support cache line LOCK and INVAL operation

900 Series System Interface Introduction

Bus Interface	Description	Atomic Support	Burst Support	Cacheablility	Protocols	Bus Width
System Bus	System Instruction and Data	Yes	Yes	Configurable	AXI4	64 bit
ILM Interface	Local Instruction	No	No	No	SRAM	64 bit
DLM Interface	Local Data	No	No	No	SRAM	2*32 bit
PPI Interface	Private Peripherals	No	No	No	AHB-Lite	32 bit
Slave Interface	External Master Read	No	Yes	No	AXI4	64 bit

Nuclei CPU Subsystem

Using internal tools from Nuclei to integrate

CPU IPs with other peripheral IPs, verify and

deliver a full subsystem solution to customer.

- Save money: Full subsystem IP reduces customer's cost;
- Save time: Pre-integrated SoC subsystem
 saves customer's development cycle;
- Save effort: Related SoC driver and SDK
 help fast prototype bring up.

Innovative Subsystem IP Use Case

Use Case #1

Single-core:

Customer succeeded to bring up in 2
weeks based on delivered IP package &
SDK

Use Case #2

Multi-core:

Supported two modes (real-time & application), including IDU, bus matrix, etc.

Nuclei IDE

Eclipse CDT Based development environment, easy hands on with manual.

- Nuclei RISC-V GCC, OpenOCD and QEMU integrated
- Nuclei Package(NPK) software solution
- Support SoC Subsystem SDK one-click import
- Portable executables, without installation
- One-click project template
- One-click project configuration
- In system debugging and programming
- Integrated serial port tool
- Real time register display
- Support Linux and Windows
- Deeply integrated with RV Prof professional performance profiling and optimizing tool, instruction and cycle level accurate
- Embedded with RISC-V e-trace, debug and analyze performance with ATB2AXI module and trace decoder

NA900 Series Has Been Deployed to Automotive Applications

