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Introduction

This document describes the ISA (Instruction Set Architecture) implemented in Nuclei processor core, including the in-
struction set and privileged architecture features.

Basically, Nuclei processor core are following and compatible to RISC-V standard architecture, but there might be some
additions and enhancements to the original standard spec.

To respect the RISC-V standard, this document may not repeat the contents of original RISC-V standard, but will highlight
the additions and enhancements of Nuclei defined.
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5.1 RISC-V ISA Extensions supported by Nuclei Core

Nuclei processor core follows the RISC-V instruction set standard (riscv-spec-20240411.pdf).

RISC-V is the configurable modular instruction set. Nuclei processor core support the following RISC-V Extensions:

Nuclei RISC-V Instruction Set Overview

Rv32E, v1.9: 32bits architecture, with 16 general purpose registers
RV32I, v2.1: 32bits architecture, with 32 general purpose registers
RV64I, v2.1: 64bits architecture, with 32 general purpose registers
Zicsr, v2.0: Control and Status register Extension.

Zicntr/Zihpm, v2.0: Counters Extension.

Zihintntl, v1.0: Non-Temporal Locality Hints Extension.
Zihintpause, v1.0: Pause Hint Extension.

M, v2.0: Integer Multiplication and Division instructions.

Zmmul, v1.0: Integer Multiplication instructions.

C, v2.0: Compressed Instructions as 16bits Encoding to reduce code size.

A, v2.1: Atomic Instructions.

B, v1.0: Bit Manipulation Instructions.

F, v2.2: Single-Precision Floating-Point Instructions.
D, v2.2: Double-Precision Floating-Point Instructions.
Zth, v1.0: Half-Precision Floating-Point Instructions.
Zthmin, v1.0: Mini Half-Precision Floating-Point Instructions.
Zfa, v1.0: Additional Floating-Point Instructions.
BF16, v1.0: BF16 Format Floating-Point Instructions.
P, v0.5.4: Packed-SIMD Instructions.

V, v1.0: Vector Instructions.

Zvb, v1.0.0: Vector bit-manipulation Instructions.

K, v1.0: Scalar & Entropy Source Instructions.

Zvk, v1.0.0: Vector Scalar Instructions.

Zc, v1.0: Group of extensions which define subsets of the existing C extension (Zca, Zcd, Zcf) and new extensions

which only contain 16-bit encodings.

12
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Zicond, v1.0: Integer Conditional Operations Extension.

CMO, v1.0: Base Cache Management Operation ISA Extension.

Etrace, v1.0: Processor Trace.

Sste, v1.0.0: S-mode timer interrupt Extension.

Svnapot, v1.0: NAPOT Translation Extension.

Svpbmt, v1.0: Page-Based Memory Types Extension.

Svinval, v1.0: Fine-Grained Address-Translation Cache Invalidation Extension.

Smepmp, v1.0: PMP Enhancements for memory access and execution prevention on Machine mode Extension.
Smwg, v0.4: WorldGuard Extension.

Sscofpmf, v1.0.0: Count Overflow and Mode-Based Filtering Extension.

Smpu, v0.9.0: S-mode Memory Protection Extension.

Smclic,Ssclic,Smclicshv,Smclicconfig, v0.9: Core-Local Interrupt Controller(CLIC) Extension.
Advanced Core Local interrupt, v1.0: MTIMER, MSWI and SSWIL.

Platform-Level Interrupt Controller(PLIC), v1.0.0_rc5.

According to the naming rule from RISC-V standard, the above-mentioned instruction set module can be combined, e.g.,
RV32IMAC, RV32IMFC, RV32IMAFDC, RV32IMAFDCP, etc. RISC-V standard also use the abbreviation G for the
IMAFD combination, hence, RV32IMAFDC or RV64IMAFDC can be also abbreviated as RV32GC or RV64GC.

5.2

Nuclei Processor Core Classes: N, U, NX and UX

To differentiate the IP products with different positions, Nuclei divides the core products into 4 classes:

Nuclei N class: support RV32I or RV32E, for the 32bits microcontroller applications.
— Nuclei N200 series core can be configured to support RV32E or RV32I.
— Nuclei N300, N600, N90O series core only support RV321.

Nuclei U class: support RV32I with MMU, for the 32bits Linux capable applications.

— The MMU can also be turned off by software, in this mode, U class core can also work as microcontroller, i.e.,
Nuclei U class core is downward-compatible to Nuclei N class core.

Nuclei NX class: support RV64I without MMU, for the 64bits microcontroller applications.
Nuclei UX class: support RV641 with MMU, for the 64bits Linux capable applications.

— The MMU can also be turned off by software, in this mode, UX class core can also work as microcontroller,
i.e., Nuclei UX class core is downward-compatible to Nuclei NX class core.

5.2. Nuclei Processor Core Classes: N, U, NX and UX 13



Nuclei RISC-V Privileged Architecture

6.1 RISC-V Privileged Architecture supported by Nuclei Core

Nuclei processor core follows the RISC-V privileged architecture standard (riscv-privileged-20240411.pdf).

And Nuclei 900 series cores v2.8.0 or later follow latest RISC-V Profile , N900 and NX900 is compatible to RVI22 Profile
and UX900 is compatible to RVA22 Profile.

Basically, Nuclei processor core are following and compatible to RISC-V standard privileged architecture, but there might
be some additions and enhancements to the original standard spec.

To respect the RISC-V standard, this document may not repeat the contents of original RISC-V standard, but will highlight
the additions and enhancements of Nuclei defined.

6.2 Privileged Modes

Following the RISC-V privileged architecture standard, Nuclei processor core support following Privilege Modes:
* Machine Mode
* Supervisor Mode
* User Mode

Note: According to the RISC-V standard privileged architecture, there is no way for the software to check current privileged
mode (e.g., machine mode or user mode).

Please refer to RISC-V standard privileged architecture for more details.

6.3 Debug Modes

Nuclei processor core also support debug mode to support off-chip debugging. Nuclei processor core follows the RISC-V
debug standard (riscv-debug-spec-v.0.13.2.pdf).
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6.4 Machine Sub-Mode added by Nuclei

Besides the above-mentioned standard Privilege Modes, Nuclei processor core further defined 4 types of sub-mode, to
differentiate the exact machine mode status, called Machine Sub-Mode:

* Normal Machine Mode
— The processor core will be under this default sub-mode when out of reset.

— If the processor core does not encounter exception, NMI, interrupt, debug request, or does not switch mode
explicitly, then it will remain in this sub-mode.

» Exception Handling Mode

— The processor core will be under this sub-mode when the core encountered exception trap. Please refer to
Exception Handling in Nuclei processor core (page 16) for more details.

* NMI Handling Mode

— The processor core will be under this sub-mode when the core encountered NMI trap. Please refer to NMI
Handling in Nuclei processor core (page 19) for more details.

¢ Interrupt Handling Mode

— The processor core will be under this sub-mode when the core encountered interrupt trap. Please refer to
Interrupt Handling in Nuclei processor core (page 23) for more details.

Nuclei defined a CSR register msubm to reflect processor core’s current machine sub-mode (msubm.TYP) and previous
machine sub-mode (msubm.PTYP). Please refer to msubm (page 115) for more details of CSR register msubm.

6.4. Machine Sub-Mode added by Nuclei 15



Exception Handling in Nuclei processor core

7.1 Exception Overview

Exception is that the processor core suddenly encounters an abnormal situation when executing the program instruction
stream, and aborts execution of the current program, and turns to handle the exception instead. The key points are as
follows:

» The “abnormal event” which the core encounters is called an exception. An exception is caused by an internal event
in the core or an event during the execution of the program, such as a hardware failure, a program failure, or the
execution of a special system call instruction. In short, it is a core-internal issue.

* When the exception is taken, the core will enter the exception handler program.

7.2 Exception Masking

According to the RISC-V architecture, exception cannot be masked, which means if the core encounters an exception, it
must stop current execution and turns to handle the exception.

7.3 Priority of Exception

It is possible that the core encounters multiple exceptions at the same time, so exceptions also have priority. The priority of
the exception is defined in RISC-V standard privileged architecture, please refer to RISC-V standard privileged architecture
for more details.

7.4 Entering Exception Handling Mode

Taking an exception, hardware behaviors of the Nuclei processor core are shown in The overall process of exception
(page 17). Note that the following operations are done simultaneously in one cycle:

 Stop the execution of the current program, and start from the PC address defined by the CSR mtvec. Update the
CSR registers: mcause, mepc, mtval, and mstatus. Update the Privilege Mode.

— These behaviors are following RISC-V standard privileged architecture specification. This document will not
repeat its content, please refer to RISC-V standard privileged architecture specification for more details.

¢ Update the Machine Sub-Mode of the core.

— This is unique in Nuclei processor core, and will be detailed in the following section.

16
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Jump to a new PC address to execute address for exception handler
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11

Switch Machine Sub-Mode to EXception Handing Mode |

Fig. 7.1: The overall process of exception

7.4.1 Update the Machine Sub-Mode

The Machine Sub-Mode of the Nuclei processor core is indicated in the msubm.TYP filed in real time. When the core
takes an exception, the Machine Sub-Mode will be updated to exception handling mode, so:

¢ The filed msubm.TYP is updated to exception handling mode, as shown in The CSR mstatus and msubm updating
when enter/exit the exception (page 17), to reflect the current Machine Sub-Mode is “Exception Handling Mode”.

¢ The value of msubm.PTYP will be updated to the value of msub.TYP before taking the exception, as shown in The
CSR mstatus and msubm updating when enter/exit the exception (page 17). The value of msubm.PTYP will be used
to restore the value of msubm.PTYP after exiting the exception handler.

Take an exception

mstatus.MIE mstatus.MPIE
Privilege Mode mstatus. MPP
msubm.TYP msubm.PTYP

Return from an exception

Fig. 7.2: The CSR mstatus and msubm updating when enter/exit the exception

7.5 Exit the Exception Handling Mode

After handling the exception, the core needs to exit from the exception handler eventually. Since the exception is handling
in Machine Mode, the software has to execute mret to exit the exception handler.

The hardware behavior of the processor after executing mret instruction is as shown in The overall process of exiting an
exception (page 18). Note that the following hardware behaviors are done simultaneously in one cycle:

* Stop the execution of the current program, and start from the PC address defined by the CSR mepc. Update the CSR
mstatus. And update the Privilege Mode.

— These behaviors are following RISC-V standard privileged architecture specification. This document will not
repeat its content, please refer to RISC-V standard privileged architecture specification for more details.

7.5. Exit the Exception Handling Mode 17
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» Update the Machine Sub-Mode of the core.

— This is unique in Nuclei processor core, and will be detailed in the following section.

Exit the exception, software must execute mret

Jump to the PC defined by CSR register mepc

Exit the Exception Update CSR registers mstatus

Restore the Privilege Mode

Restore the Machine Sub-Mode

Fig. 7.3: The overall process of exiting an exception

7.5.1 Update the Machine Sub-Mode

The value of msubm.TYP indicates the Machine Sub-Mode of the Nuclei processor core in real time. After executing the
mret instruction, the hardware will automatically restore the core’s Machine Sub-Mode by the value of msubm.PTYP:

 Taking an exception, the value of msubm.PTYP is updated to the Machine Sub-Mode before taking the exception. Af-
ter executing the mret instruction, the hardware will automatically restore the Machine Sub-Mode using the value of
msubm.PTYP, as shown in The CSR mstatus and msubm updating when enter/exit the exception (page 17). Through
this mechanism, the Machine Sub-Mode of the core is restored to the same mode before taking the exception.

7.6 Exception Service Routine

When the core takes one exception, it starts to execute the program starting at the address defined by mtvec, and this
program is usually an exception service routine. The program can decide to jump further to the specified exception service
routine by querying the exception code in the CSR mcause. For example, if the exception code in mcause is 0x2, which
indicates that this exception is caused by an illegal instruction, then it can jump to the specific handler for illegal instruction
fault.

Note: Since there is no hardware to save and restore the execution context automatically when take or exit an exception,
so the software needs to explicitly use the instruction (in assembly language) for context saving and restoring.

7.6. Exception Service Routine 18



NMI Handling in Nuclei processor core

8.1 NMI Overview

NMI (Non-Maskable Interrupt) is a special input signal of the processor core, often used to indicate system-level emergency
errors (such as external hardware failures, etc.). After encountering the NMI, the processor should abort execution of the
current program immediately and process the NMI error instead.

8.2 NMI Masking

In the RISC-V architecture, NMI cannot be masked, which means if the core encounters an NMI, it must stop current
execution and turns to handle the NMI.

8.3 Entering NMI Handling Mode

Taking an NMI, hardware behaviors of the Nuclei processor core are described as shown in The overall process of NMI
(page 20). Note that the following operations are done simultaneously in one cycle:

» Update the CSR registers: mepc and mstatus.

— These behaviors are following RISC-V standard privileged architecture specification. This document will not
repeat its content, please refer to RISC-V standard privileged architecture specification for more details.

» Update the CSR registers: mcause.

— The value of mcause for NMI is unique in Nuclei processor core, and will be detailed in the following section.
* Stop the execution of the current program, and start from the PC address defined by the CSR mnvec.

— The value of mnvec is unique in Nuclei processor core, and will be detailed in the following section.
» Update the Privilege Mode and Machine Sub-Mode of the core.

— This is unique in Nuclei processor core, and will be detailed in the following section.
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Fig. 8.1: The overall process of NMI

8.3.1 Execute from the PC Defined by mnvec
The Nuclei processor core jumps to the PC defined by the CSR mnvec after encountering an NMI. The CSR mnvec has
two potential values controlled by CSR register mmisc_ctl:

* When mmisc_ctl[9]=1, the value of mnvec is equal to the value of mtvec, which means NMIs and exceptions share
the same trap entry address.

e When mmisc_ctl[9]=0, the value of mnvec equals to the value of reset_vector which is the PC value after a reset.
The reset_vector is the core’s input signal. Please refer to the specific databook of the Nuclei processor core for
details about this signal.

8.3.2 Update the CSR mcause

The Nuclei processor core will save the NMI code into the CSR mcause. EXCCODE by the hardware automatically when
take a NMI. Interrupts, exceptions and NMIs all have their own specified Trap ID. The Trap ID of NMI has two potential
values controlled by CSR register mmisc_ctl:

* When mmisc_ctl[9]=1,the Trap ID of NMI is Oxfff.
* When mmisc_ctl[9]=0,the Trap ID of NMI is Ox1.

The software can recognize the Trap reason querying the Trap ID, and build the corresponding trap handler program for
different types of traps.

8.3.3 Update the Privilege Mode

NMI is handed in Machine Mode, so the privilege mode will be switched to Machine Mode when the core takes an NMI.

8.3.4 Update the Machine Sub-Mode

The Machine Sub-Mode of the Nuclei processor core is indicated in the msubm.TYP filed in real time. When the core
takes an NMI, the Machine Sub-Mode will be updated to NMI handling mode, so:

* The filed msubm.TYP is updated to NMI handling mode, as described in The CSR mstatus and msubm updating
when enter/exit the NMI (page 21), to reflect the current Machine Sub-Mode is “NMI handling mode”.

¢ The value of msubm.PTYP will be updated to the value of msub.TYP before taking the NMI, as shown in 7/he CSR
mstatus and msubm updating when enter/exit the NMI (page 21). The value of msubm.PTYP will be used to restore
the value of msubm.PTYP after exiting the NMI handler.

8.3. Entering NMI Handling Mode 20
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Take an NMI

mstatus.MIE mstatus.MPIE
Privilege Mode mstatus. MPP
msubm.TYP msubm.PTYP

Return from an NMI

Fig. 8.2: The CSR mstatus and msubm updating when enter/exit the NMI

8.4 Exit the NMI Handling Mode

After handling the NMI, the core needs to exit from the NMI handler eventually, and return to execute the main program.
Since the NMI is handling in Machine Mode, the software has to execute mret to exit the NMI handler.

The hardware behavior of the processor after executing mret instruction is as shown in The overall process of exiting an
NMI (page 21). Note that the following hardware behaviors are done simultaneously in one cycle:

* Stop the execution of the current program, and start from the PC address defined by the CSR mepc. Update the CSR
mstatus.Update the Privilege Mode.

— These behaviors are following RISC-V standard privileged architecture specification. And the behaviors are
exactly same as the behaviors “Exit the Exception Handling Mode”, this document will not repeat its content
here, please refer to RISC-V standard privileged architecture specification for more details.

» Update the Machine Sub-Mode.

— This is unique in Nuclei processor core, and will be detailed in the following section.

Exit the NMI, software must execute mret

Jump to the PC defined by CSRregister mepc

Exit the NMI

Update CSR registers mstatus

Restore the privilege mode

Restore the machine sub-mode

Fig. 8.3: The overall process of exiting an NMI

8.4. Exit the NMI Handling Mode 21
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8.4.1 Update the Machine Sub-Mode

The value of msubm.TYP indicates the Machine Sub-Mode of the Nuclei processor core in real time. After executing the
mret instruction, the hardware will automatically restore the core’s Machine Sub-Mode by the value of msubm.PTYP:

» Taking an NMI, the value of msubm.PTYP is updated to the Machine Sub-Mode before taking the NMI. After
executing the mret instruction, the hardware will automatically restore the Machine Sub-Mode using the value of
msubm.PTYP, as shown in The CSR mstatus and msubm updating when enter/exit the NMI (page 21). Through this
mechanism, the Machine Sub-Mode of the core is restored to the same mode before taking the NMI.

8.5 NMI Service Routine

When the core takes an NMI, it will jump to execute the program at the address defined by mnvec, which is usually the
NMI service routine.

Note: Since there is no hardware to save and restore the execution context automatically when take or exit an NMI, so the
software needs to explicitly use the instruction (in assembly language) for context saving and restoring.
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Interrupt Handling in Nuclei processor core

9.1 Interrupt Overview

Interrupt, that is, the core is suddenly interrupted by other requests during the execution of the current program, and the
current program is stopped, and then the core turns to handle other requests. After handling other requests, the core goes
back and continues to execute the previous program.

The key points of interrupts are the followings:

* The “other request” interrupts the processor core is called Interrupt Request. The source of this request is called the
Interrupt Source. The interrupt source is usually comes from outside the core which is called the External Interrupt
Source, but some of the interrupt sources are core-internal, which are called the Internal Interrupt Sources.

» The program used to handle the “other request” is called the Interrupt Service Routine (ISR).

* Interrupt mechanism is a normal mechanism, not an error situation. Once the core receives an interrupt request, it
needs to save the context of the current execution status, which is referred as “context saving”. After processing the
request, the core needs to restore the previous status, referred to “context restoring”, thereby continuing to execute
the previously interrupted program.

» There may be multiple interrupt sources that simultaneously initiate requests to the core, and an arbitration is needed
to select one from these sources to determine which interrupt source is prioritized. This scenario is called “interrupt
arbitration”, and different interrupts can be assigned with different levels and priorities to facilitate the arbitration,
so there is a concept of “interrupt level” and “interrupt priority”.

9.2 CLIC mode and CLINT mode

9.2.1 Setting CLINT or CLIC mode

The Nuclei processor core supports the “CLINT interrupt mode (CLINT mode in short)” and “CLIC interrupt mode
(CLIC mode in short)”. Software can set the different mode by writing least significant bits of mtvec, please refer to mrvec
(page 112) for more details.

Please refer to following sections for the recommendations of when to set the CLIC mode or CLINT mode.
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9.2.2 CLINT mode

CLINT mode is the default mode after reset, it is a simple interrupt handling scheme.

The CLINT mode relying on the PLIC (Platform Level Interrupt Controller) in conjunction with the CSR register mie and
mip, which is part of RISC-V standard privileged architecture specification. Please refer to RISC-V standard privileged
architecture specification for more details.

The CLINT mode is recommended to be used in Linux capable applications or symmetric multi-processor (SMP) appli-
cations, please refer to PLIC Unit Introduction (page 44) for more details.

9.2.3 CLIC mode

CLIC mode is not the default mode after reset, hence need software to explicitly turn it on.

CLIC mode is a relevantly complicate interrupt handling scheme. The CLIC mode relying on the ECLIC (Enhanced Core
Local Interrupt Controller), but the CSR register mie and mip are functionally bypassed in this mode.

The CLIC mode is recommended to be used in real-time or microcontroller applications, please refer to ECLIC Unit
Introduction (page 46) for more details.

9.3 Interrupt Type

The types of interrupts supported by the Nuclei processor core are shown in Interrupt Types (page 24).

— External Interrupt

Interrupt Types >

Timer Interrupt

— Internal Interrupt —®1—| Software Interrupt

Nuclei Implementaion
— Internal Interrupts

Fig. 9.1: Interrupt Types

These will be detailed in the following sections.

9.3.1 External Interrupt

An external interrupt is an interrupt initiated from outside the core. External interrupts allow user to connect to an external
interrupt source, such as an interrupt generated by an external device like UART, GPIO and so on.

The Nuclei processor core supports multiple external interrupt sources.

Note:

e In CLINT mode, all of external interrupts are managed by the PLIC, as depicted in Single-core with PLIC/ECLIC
configured and PLIC enabled (page 61).

* In CLIC mode, all of external interrupts are managed by the ECLIC, as depicted in Single-core with PLIC/ECLIC
configured and ECLIC enabled (page 62).
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9.3.2 Internal Interrupt

The Nuclei processor core has several core-internal private interrupts as the followings:
» Software Interrupt

— The Nuclei processor core implements a TIMER unit, and msip/ssip register is defined in the TIMER unit,
through which machine/supervisor software interrupts can be generated. Please see Generating the Software
Interrupt through msip/ssip (page 43) for details.

e Timer Interrupt

— The Nuclei processor core implements a TIMER unit, and a counter is defined in the TIMER unit, through
which machine time interrupts can be generated. Please see Generate the Machine Timer Interrupt through
mtime and mtimecmp (page 42) for details. For Supervisor timer interrupt, please refer <RISC-V SSTC> for
more details.

* Nuclei Implementation Internal Interrupts

— Some Nuclei processor cores implement more Internal Interrupts, the later sections of this document show
more details.

Note:

e In CLINT mode, the internal interrupts of the Nuclei processor core are managed by CSR register mie and mip, as
depicted in mie (page 111) and mip (page 111).

* In CLIC mode, the internal interrupts of the Nuclei processor core are also managed by the ECLIC, as depicted in
Single-core with PLIC/ECLIC configured and ECLIC enabled (page 62).

9.4 Interrupt Masking

9.4.1 Global Interrupt Masking

Interrupts in machine mode can be masked globally by the control bit of CSR mstatus.MIE in Nuclei processor core. Please
refer to RISC-V standard privileged architecture specification for more details.

9.4.2 Individual Interrupt Masking

It can also be masked individually for different interrupt sources:
e In CLINT mode:

— In machine mode, the CSR register mie. MSIE/MTIE can be used to disable software interrupt, timer interrupt
individually respectively. If there are other implementation internal interrupts, the CSR mie related bits will
also be implemented. The mie. MEIE can be used to disable all the external interrupts managed by PLIC. Please
refer to RISC-V standard privileged architecture specification for more details.

— And PLIC unit also have memory mapped registers to enable/disable each interrupt source managed by PLIC.
Please see PLIC Registers (page 44) for details.

¢ In CLIC mode, ECLIC have memory mapped register to enable/disable each interrupt source managed by ECLIC.
Users can program the corresponding ECLIC register to manage some specified interrupt sources. Please see ECLIC
Registers (page 49) for details.
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9.5 Interrupt Levels, Priorities and Arbitration

When multiple interrupts are initiated at the same time, the arbitration is required:
e In CLINT mode:

— The PLIC manages all external interrupts. PLIC assigns its own interrupt priority registers to each external
interrupt source. Users can program the PLIC registers to manage the priority of the specified interrupt sources.
When multiple interrupts occur simultaneously, the PLIC will select the one that has the highest priority and
sent interrupt request to the core (as meip). Please see PLIC Registers (page 44) for details.

¢ In CLIC mode:

— The ECLIC manages all interrupts. ECLIC assigns its own interrupt level and priority registers to each interrupt
source. Users can program the ECLIC registers to manage the level and priority of the specified interrupt
sources. When multiple interrupts occur simultaneously, the ECLIC will select the one that has the highest
level/priority to be taken. Please see ECLIC Registers (page 49) for more details.

Multiple Interrupts
Pending

Interrupt 1

Interrupt 2 Arbitration

> | mempe [ >

Interrupt 3

Interrupt 4

Fig. 9.2: Arbitration among Multiple Interrupts

9.6 (CLIC mode) Entering Interrupt Handling Mode

Ifitis in CLINT mode, taking an interrupt, hardware behaviors of the Nuclei processor core are following RISC-V standard
privileged architecture specification. This document will not repeat its content, please refer to RISC-V standard privileged
architecture specification for more details.

If it is in CLIC mode, taking an interrupt, hardware behaviors of the Nuclei processor core are described as below. Note
that the following operations are done simultaneously in one cycle:

 Stop the execution of the current program, and jump to another PC to execute.
— Update the following CSR registers:
% mcause
* mepc
* mstatus
* mintstatus
» Update the Privilege Mode and Machine Sub-Mode of the core.
* The overall process of interrupt is shown in The Overall Process of Interrupt for CLIC mode (page 27).

These will be detailed in the following sections.
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Jump to the corresponding
interrupt handler directly if it is

a vectored interrupt.
—>| Jump to a new PC address to execute

Jump to the common base
address if it is a non-vectored
interrupt.

mepc

mstatus

Take an interrupt Update CSRs l—
mcause

mintstatus

il

Switch the privilege mode to Machine Mode |

1N

Switch Machine Sub-Mode to Interrupt Handing Mode |

Fig. 9.3: The Overall Process of Interrupt for CLIC mode

9.6.1 Execute from a new PC
In CLIC mode, each interrupt source of the ECLIC can be set to vectored or non-vectored interrupt (via the shv filed of
the register clicintattr[i]). The key points are as follows:

« If the interrupt is configured as a vectored interrupt, then the core will jump to the corresponding target address of
this interrupt in the Vector Table Entry when this interrupt is taken. For details about the Interrupt Vector Table,
please refer to (CLIC mode) Interrupt Vector Table (page 31). For details of the vectored processing mode, please
refer to Vectored Processing Mode (page 37).

« If the interrupt is configured as a non-vectored interrupt, then the core will jump to a common base address shared
by all interrupts. For details of the non-vectored processing mode, please refer to Non-Vectored Processing Mode

(page 34).

9.6.2 Update the Privilege Mode

The privilege mode will be switched to Machine Mode when the core takes an Interrupt.

9.6.3 Update the Machine Sub-Mode

The Machine Sub-Mode of the Nuclei processor core is indicated in the msubm.TYP filed in real time. When the core
takes an interrupt, the Machine Sub-Mode will be updated to interrupt handling mode, so:

* The value of msubm.PTYP will be updated to the value of msub.TYP before taking the interrupt as shown in Figure
6-4. The value of msubm.PTYP will be used to restore the value of msub. TYP after exiting the interrupt handler.

e The filed msubm.TYP is updated to interrupt handling mode, as described in Figure 6-4, to reflect the current
Machine Sub-Mode is “interrupt handling mode”.
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9.6.4 Update the CSR mepc

The return address when the Nuclei processor core exits the interrupt handler is stored in the CSR mepc. When the core
takes an interrupt, the hardware will update the CSR mepc automatically, and the value in this CSR will be the return
address when exit the interrupt handler. After handling the interrupt, the PC value is restored from this CSR mepc to
return to the execution point that was previously stopped.

Note: When an interrupt is taken, the CSR mepc is updated to the PC of the instruction that encounters the interrupt.
Then after exiting the interrupt, the program will continue to execute from the instruction that encounters the interrupt.

Although the CSR mepc can be updated automatically encountering an interrupt, it is a both readable and writeable register,
so the software can modify it explicitly.

9.6.5 Update the CSRs mcause/mstatus/mintstatus

The Nuclei processor core will update the CSR mcause by the hardware automatically, as described in 7he CSR updating
when enter/exit the Interrupt (page 29), explained as follows:

* A mechanism is required to record the ID of the interrupt being taken.

— When an interrupt is taken by the Nuclei processor core, the field mcause. EXCCODE is updated to the ID of
the taken interrupt by the ECLIC, so the software can query the ID of this selected interrupt by reading CSR
mcause.

* When the current interrupt is taken, a mechanism is required to record the global interrupt enable bit and the Privilege
Mode before taking the interrupt.

— When the Nuclei processor core takes an interrupt, the filed mstatus.MPIE will be updated to the value of
mstatus.MIE, and the filed mstatus.MIE will be set to 0, which means interrupts are globally masked, and all
interrupts will not be taken.

— When the Nuclei processor core takes a M-mode interrupt, the Privilege Mode of the core will be switched to
Machine Mode, and the field mstatus.MPP will be set to the Privilege Mode before taking the interrupt.

* When the current interrupt is taken, possibly it is preempting the interrupt who was previously being processed
(whose interrupt level is relatively lower, so it can be preempted), and a mechanism is needed to record the interrupt
level of the preempted interrupt.

— When an interrupt is taken by the Nuclei processor core, the field mcause.MPIL is updated to the value of
minstatus.MIL, and the mintstatus.MIL records current interrupt’s level vaule. The value of mcause.MPIL is
used to restore the value of mintstatus.MIL after handling the interrupt.

« If the taken interrupt is a vectored interrupt, the core will jump to the corresponding target address stored in the Vector
Table Entry. For a detailed description of the vectored interrupt processing mode, please see Vectored Processing
Mode (page 37). In terms of the hardware implementation, the processing of an interrupt needs to be divided into
two steps. The first step is to query the target address from the Vector Table, and then jump to the target address in
the second step. Then, it is possible that a memory access occurs in the first step, querying the target address from
the Vector Table, so a mechanism is required to record such a special memory access error.

— When the Nuclei processor core takes an interrupt, if the interrupt is a vectored mode interrupt, the value of
mcause.minhv will be updated to 1, and then cleared to 0 when the above “two-step” operation is completed.
Assuming a memory access error occurs midway, it will raise an Instruction Access Fault exception, and the
value of mcause.minhv will be 1 assuming this bit is not cleared.

Note: The mcause.MPIE and mcause.MPP are mirrored with the field of mstatus. MPIE and mstatus. MPP. Which means
normally the value of mstatus.MPIE is always the same as the value of mcause.MPIE and the value of mstatus.MPP is the
same as the value of mcasue.MPP.

If the value mintstatus.MIL is not 0, it means that core is handing an interrupt which level is MIL. If new interrupt is
comming from ECLIC, the level of new interrupt should be greater than mintstatus.MIL so the new interrupt can preempt
current interrupt, or it has waiting current interrupt finishing (mintstatus.MIL will be updated when an interrupt finishes
in mret mechanism).
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mintstatus. MIL

mstatus.MIE
Privilege Mode
msubm.TYP

Take an interrupt

Return from an interrupt

mcause.MPIL
mstatus.MPIE
mstatus. MPP
msubm.PTYP

Fig. 9.4: The CSR updating when enter/exit the Interrupt

9.7 (CLIC mode) Exit the Interrupt Handling Mode

If itis in CLINT mode, after handling the interrupt, hardware behaviors of the Nuclei processor core are following RISC-V
standard privileged architecture specification. This document will not repeat its content, please refer to RISC-V standard
privileged architecture specification for more details.

If it is in CLIC mode, after handling the interrupt, the core needs to exit from the interrupt handler eventually, and return
to execute the main program. Since the interrupt is handling in Machine Mode, the software must execute mret to exit the
interrupt handler. The hardware behavior of the processor after executing mret instruction is as depicted in The overall
process of exiting an interrupt (page 29). Note that the following hardware behaviors are done simultaneously in one cycle:

* Stop the execution of the current program, and start from the PC address defined by the CSR mepc.

» Update the following CSRs:
— mstatus
— mcause

— mintstatus

» Update the Privilege Mode and the Machine Sub-Mode.

Y

Exit an interrupt, the software must execute mret

Y

Jump to the PC defined by mepc to execute

Exit an interrupt

Y

Update CSRs

mstatus

H.

mintstatus

Y

Restore the Privilege Mode

> Restore the Machine Sub-Mode

Fig. 9.5: The overall process of exiting an interrupt

These will be detailed in the following sections.

9.7. (CLIC mode) Exit the Interrupt Handling Mode
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9.7.1 Executing from the Address Defined by mepc

When an interrupt is taking, the mepc is updated to the PC value of the instruction encountered the interrupt. Through this
mechanism, executing the mret instruction, the core will return to the instruction encountered the interrupt, and continues
to execute the program.

9.7.2 Update the CSRs mcause and mstatus

The Nuclei processor core will update the CSR mcause when executes one mret instruction, explained as follows:

* When an interrupt is taken, the value of mcause.MPIL will be updated to the value of mintstatus.MIL before taking
the interrupt, while the mintstatus.MIL records current interrupt’s level vaule. The hardware will restore the value
of minstatus.MIL using the value of mcause.MPIL when executes the mret instruction to exit the interrupt handler.
Through this mechanism, the value of mintstatus.MIL is restored to the previous value before taking the interrupt.

* When an interrupt is taken, the value of mcause.MPIE will be updated to the value of mstatus.MIE before taking the
interrupt. The hardware will restore the value of mstatus.MIE using the value of mcause.MPIE when executes the
mret instruction to exit the interrupt handler. Through this mechanism, the value of mstatus.MIE is restored to the
previous value before taking the interrupt.

e When an interrupt is taken, the value of mcause.MPP will be updated to the Privilege Mode before taking the
interrupt. The hardware will restore the Privilege Mode using the value of mcause.MPP when executes the mret
instruction to exit the interrupt handler. Through this mechanism, the Privilege Mode is restored to the previous
value before taking the interrupt.

Note: The mcause.MPIE and mcause.MPP are mirrored with the field of mstatus.MPIE and mstatus. MPP. Which means
normally the value of mstatus.MPIE is always the same as the value of mcause.MPIE and the value of mstatus.MPP is the
same as the value of mcasue.MPP.

9.7.3 Update the Privilege Mode

The hardware will update the Privilege Mode using the value of mcause.MPP automatically after the execution of the mret
instruction:

» Taking an interrupt, the value of mstatus.MPP was updated to the Privilege Mode of the core before taking the inter-
rupt, and after executing the mret instruction, the value of Privilege Mode is restored by the value of mstatus.MPP.
Through this mechanism, the core is guaranteed to return to the Privilege Mode before taking the interrupt.

9.7.4 Update the Machine Sub-Mode

The value of msubm.TYP indicates the Machine Sub-Mode of the Nuclei processor core in real time. After executing the
mret instruction, the hardware will automatically restore the core’s Machine Sub-Mode by the value of msubm.PTYP:

e Taking an interrupt, the value of msubm.PTYP is updated to the Machine Sub-Mode before taking the interrupt.
After executing the mret instruction, the hardware will automatically restore the Machine Sub-Mode using the value
of msubm.PTYP. Through this mechanism, the Machine Sub-Mode of the core is restored to the same mode before
taking the interrupt.
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9.8 (CLIC mode) Interrupt Vector Table

If in CLINT mode, Nuclei processor core does not support the vector mode. Hence, there is no vector table relevant.
Herein this section only introduces the CLIC mode interrupt vector table.

If in CLIC mode, as shown in Interrupt Vector Table (page 31), the interrupt vector table is a contiguous address space in
the memory, and each word of this address space is used to store the address of the interrupt service routine corresponding
to each interrupt source of the ECLIC.

The base address of the interrupt vector table is defined by the CSR mtvt.

The role of the interrupt vector table is very important. When the core takes an interrupt, no matter a vectored or non-
vectored interrupt, the hardware will eventually jump to the corresponding PC of the interrupt service routine by querying
the interrupt vector table. Please see (CLIC mode) Vectored and Non-Vectored Processing Mode of Interrupts (page 33)
for more details.

// The interrupt service routine
// of interrupt sourceO
interrupt_0_handler() {

Each entry store a PC which
pointed to the corresponding
interrupt service routine

<Interrupt Handler Program>

Entry O

Entry 1 // The interrupt service routine
Entry 2 // of interrupt sourcel

interrupt_1_handler() {

The start address of
vector table located
at some
aligned address

<Interrupt Handler Program>

Entry 4095

Fig. 9.6: Interrupt Vector Table

9.9 Context Saving and Restoring

Nuclei processor core based on the RISC-V architecture do not support the hardware automatic context saving and restoring
when take or exit an interrupt. So the software is required to write the instructions (in assembly language) for context saving
and restoring.

For CLIC mode, depending on whether the interrupt is a vectored or non-vectored, the context requiring saving and restor-
ing will vary. Please see (CLIC mode) Vectored and Non-Vectored Processing Mode of Interrupts (page 33) for more
details.

9.10 Interrupt Response Latency

The concept of interrupt response latency usually refers to the cycle consumed from the time point “external interrupt
source asserting” to the time point “the first instruction in the corresponding interrupt service routine of C function is
executed”. Therefore, the interrupt latency usually includes the following aspects of the cycle overhead:

» The overhead of jumping to the target PC
* The overhead of context saving

» The overhead of jumping to the Interrupt Service Routine of C function
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For CLIC mode, interrupt response latency varies depending on whether the interrupt is a vectored or non-vectored. Please
see (CLIC mode) Vectored and Non-Vectored Processing Mode of Interrupts (page 33) for more details.

9.11 (CLIC mode) Interrupt Preemption

If in CLINT mode, Nuclei processor core does not support the interrupt preemption. Herein this section only introduces
the CLIC mode interrupt preemption.

If in CLIC mode, while the core is handling an interrupt, there may be another new interrupt request of a higher level,
and then the core can stop the current interrupt service routine and start to taken the new one and execute its “Interrupt
Service Routine”. Hence, the interrupt preemption is formed (that is, the previous interrupt has not returned yet, and the
new interrupt is taken), and there could be multi-level of nesting.

Take the case in Interrupt Preemption (page 32) as an example:

* Assuming that the core is handling one timer interrupt and suddenly an interrupt is initiated by button 1 and this
interrupt has a higher level than the timer interrupt. The core will stop processing the timer interrupt and start to
handle the interrupt initiated by button 1.

* Then another interrupt is initiated by button 2, which has a higher level than the interrupt initiated by button 1, so
the core will stop processing the interrupt of button 1 and start to handle the interrupt of button 2.

» After that no other higher-level interrupts arrive, the button 2 interrupt will not be preempted, and the core can
successfully complete the interrupt service routine of the button 2 interrupt, and then return to process the button 1
interrupt.

* Completing the interrupt service routine of button 1 interrupt, the core will return to execute the timer interrupt
service routine to handle the timer interrupt.

Button 2 interrupt
have the highest
interrupt level, hence,
the interrupt service
routine can be
completed without
preemption.

Button 2 interrupt
have a higher
interrupt level than
Button 1 interrupt,
hence,the Button 1
interrupt is
preempted. Herein

Button 1 interrupt
have a higher
interrupt level than
Timer interrupt,
hence,the Timer
interrupt is
preempted. Herein
the first level
nesting is formed.

the second level
nesting is formed.

Execute Button 2
Interrupt Service
Routine
(Level 3)

Execute Button 1
Interrupt Service
Routine
(Level 2)

Execute Timer
Interrupt Service
Routine
(Level 1)

Return to Button 1
Interrupt Service Routine
(Level 2)

Fig. 9.7: Interrupt Preemption

Return to Timer
Interrupt Service Routine
(Level 1)

In the Nuclei processor core, the supported methods for interrupt preemption depending on whether the interrupt is a
vectored interrupt or a non-vectored interrupt. Please see (CLIC mode) Vectored and Non-Vectored Processing Mode of
Interrupts (page 33) for more details.
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9.12 (CLIC mode) Interrupt Tail-Chaining

If in CLINT mode, Nuclei processor core does not support the interrupt tail-chaining. Herein this section only introduces
the CLIC mode interrupt tail-chaining.

If in CLIC mode, while the core is processing one interrupt, a new interrupt request is initiated, but the level of the new
request is not higher than the handling one, so the new interrupt request cannot preempt the handling one.

After handling the current interrupt, theoretically it is necessary to restore the context, then exit the interrupt service
routine, return to the main program, and then take the new interrupt. To take the new interrupt, it is necessary to save the
context again. Therefore, there is a back-to-back “context saving” and “context restoring”. The “tail-chaining” can save
the cost of this back-to-back “context saving” and “context-restoring”, as shown in the Interrupt tail-chaining (page 33).

Interrupt 2 request: Interrupt 2
(Its Interrupt Level is not
higher than Interrupt 1

The back-to-back "Context Restoring" for
Interrupt 1 last interrupt and "Context Saving" again

for the new interrupt.
Interrupt 1 request:

I']terruPt prpcessing save Handle Restore save Handle Restore
without tail-chaining Context Interrupt Context || Context Interrupt Context
1 1 1 2 2 2
y
If_‘terrul_)t prpcessing save Handle Handl Restore
with tail-chaining Context Interrupt and..e Context
1 1 Interrupt 2 1

N

Oonce the last interrupt is handled, the hardware will check if there is
other interrupt pending, If there are pending interrupt, then immediately
jump to interrupt service routine of next pending interrupt (with highest
level and or priority) .

This is called interrupt tailing-chain, by this way, the overhead of
back-to-back "Context Restoring" and "Context Saving" is eliminated.

Fig. 9.8: Interrupt tail-chaining

As for the Nuclei processor core, only non-vectored interrupts (CLIC mode) support the feature of tail-chaining. Please
see Non-Vectored Interrupt Tail-Chaining (page 36) for more details.

9.13 (CLIC mode) Vectored and Non-Vectored Processing Mode of In-
terrupts

In CLIC mode, each interrupt source can be configured to vectored or non-vectored processing mode (via the shv field
of the ECLIC register clicintattr[i]). There is obvious difference between the vectored and non-vector processing mode,
which are described in the following sections.
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9.13.1 Non-Vectored Processing Mode

9.13.1.1 Feature and Latency of Non-Vectored Processing Mode

If the interrupt is non-vectored, once it is taken, the core will jump to the common base entry shared by all non-vectored
interrupts, and the address of this entry can be set by software:

« If the least significant bit of the CSR mtvt2 is O (default value after reset), the common base address shared by all
non-vectored interrupts is specified by the CSR mtvec (ignoring the value of the lowest 6 bits, please refer mtvec
(page 112) for details). Since the CSR mtvec also indicates the entry address of exceptions, which means exceptions
and all non-vector interrupts share the entry address.

e If the least significant bit of the CSR mtvt2 is 1, the common entry address of all non-vectored interrupts is defined
by the CSR mtvt2 (ignoring the value of the lowest 2 bits). In order to handle the interrupt as fast as possible, it is
recommended to set the least significant bit of the CSR mtvt2 to 1, which means the entry address for all non-vectored
interrupts is separated from the entry of exceptions (exception entry is defined by the CSR mtvec).

After entering the common base entry of non-vectored interrupts, the core will start to execute a common program, as the
example shown in Example for non-vectored interrupt (page 35), the program is typically as follows:

* Firstly, save the CSR mepc, mcause, msubm into the stack. These CSR registers are saved to ensure that subsequent
preempted interruption can be handled correctly, because taken the new preempted interrupt will overwrite the values
of mepc, mcause, msubm, so they need to be saved into the stack first.

» Save several general-purpose registers (the execution context) into the stack.

* Then execute a Nuclei self-defined instruction “csrrw ra, CSR_JALMNXTI, ra”. If there is no pending interrupt,
then this instruction will be regarded as a Nop. If there is a pending interrupt, the core will take the following
operations:

— Jump to the target address stored in Vector Table Entry and execute the corresponding Interrupt Service Rou-
tine.

— The hardware will set the global interrupt enable bit mstatus.MIE while the core jumps to the interrupt service
routine. Setting the mstatus.MIE bit, new interrupt will be taken and form an interrupt preemption.

— In addition to jump to the Interrupt Service Routine, the instruction “csrrw ra, CSR_JALMNXTTI, ra” also have
the effect of a JAL (Jump and Link) instruction. The hardware will update the value of the link register to the
PC of this instruction as the return address of the function. Therefore, returning from the interrupt handler,
the core will return to the instruction “csrrw ra, CSR_JALMNXTI, ra”, and re-judge whether there is still an
interrupt pending to implement the operation of the tail-chaining. See more description of tail-chaining from
Non-Vectored Interrupt Tail-Chaining (page 36).

» At the end of the interrupt service routine, the software also needs to add the corresponding context restoring oper-
ation. Before restoring the CSR mepc, mcause, msubm, and the global interrupt enable bit mstatus.MIE needs to be
cleared again to ensure the atomicity of the recovery operations of mepc, mcause, and msubm.
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Interrupt (id=30) is taken, the core will

Main Program

jump to the common address specified by CSR

main{ mtvt2

(Interrupt Common Entry Address)

I common_entry(Interrupt Common Entry Address): Il Interrupt (ID=30) Service

<Push mepc> R?uttine t 30_handler(){
<push mcuse> /" nterrupt_s9_handler

<Push msubm>

<Push general purpose registers>/ <Handler Program>
csrrw ra , CSR_JALMNXTl,ra \
<Disable the interrupt globally> }
<Restore general purpose registers>
<Restore msubm>

<Restore mcause>

<Restore mepc>
——<mret>

Fig. 9.9: Example for non-vectored interrupt

Since the core needs to execute a common handler before jump to the specified interrupt service routine of the corre-
sponding non-vector interrupt. Therefore, the total cycle overhead from the interrupt initiation to the first instruction in
the interrupt service routine (C function) is executed are as below:

* The overhead caused by jumping to the interrupt handler which is about 4 cycles ideally.
* The overhead caused by saving CSRs mepc, mcause, msubm into the stack is about 3 cycles ideally.

* The overhead caused by saving the context. If the architecture is RV32E, then it only takes 8 cycles to save 8 general
purpose registers; if it is RV32I architecture, then there are 16 general purpose registers required to be saved.

* The overhead caused by jumping to the Interrupt Service Routine which is about 5 cycles ideally.

9.13.1.2 Preemption of Non-Vectored Interrupt

As mentioned above, non-vectored interrupt processing mode can always support interrupt preemption as the example
shown in Interrupt preemptions caused by three sequential non-vectored interrupts (page 36): assuming that the three
interrupts 30, 31, 32 come sequentially, and the level of interrupt 32 is greater than the level of interrupt 31 which is
greater than the level of interrupt 30. Since then, the subsequent interrupts will preempt interrupts that were previously
processed to form interrupt preemptions.
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Main program

Take Interrupt Jump to the common code
<Save Context>

csrrw ra ,CSR_JALMNXTLra Interrupt (ID=30) Service Routine

Take Interrupt Jump to the common code
<Save Context>

v ) )
csrrw ra ,CSR_JALMNXTLra ! Interrupt (ID=31) Service Routine
\4

Take Interrupt Jump to the common code
<Save Context>

csrrw ra ,CSR_JALMNXTILra B B
Interrupt (ID=32) Service Routine

y

Return to the common code
<Restore Context>

fl

1 Interrupt (ID=31) Service Routine

Return to the common
code
<Restore Context>

| Interrupt (ID=30) Service Routine

Return to the common code
<Restore Context>

Back to the main program

Fig. 9.10: Interrupt preemptions caused by three sequential non-vectored interrupts

9.13.1.3 Non-Vectored Interrupt Tail-Chaining

As mentioned in (CLIC mode) Interrupt Tail-Chaining (page 33), the tail-chaining can save cycles overhead significantly
(reduced a back-to-back context saving and restoring).

For non-vectored interrupts (CLIC mode), as mentioned in Feature and Latency of Non-Vectored Processing Mode
(page 34), the instruction “csrrw ra, CSR_JALMNXTI, ra” in the common base handler also achieves the effect of JAL
(Jump and Link), which means the hardware will update the value of the Link register to the PC of this instruction as
the return address. Therefore, the core will execute the instruction “csrrw ra, CSR_JALMNXTI, ra” again when it return
from the interrupt service handler (C function) and re-execute “csrrw ra, CSR_JALMNXTI, ra”, i.e., re-judge if there is a
pending interrupt to perform the tail-chaining operation.

Note: At this time, the pending interrupt’s level should be lower than MPIL of csr mstatus, or it will not be handled by
Tail-Chaining.

As the example shown in Interrupt tail-chaining (page 37): assuming the interrupts 30, 29, 28 come successively, and “the
level of interrupt 30 ” >= “the level of interrupt 29” >= “the level of interrupt 28”, then the subsequent interrupt will not
preempt the interrupt that was taken before, which means no preemption will happen, but all these subsequent interrupt
will be marked as “pending”. When the interrupt 30 has been already handled, the core will handle the interrupt 29 directly
without the intermediate “context restoring” and “context saving” procedures.
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Main Program

Take Interrupt: Jump to the common code
<Save Context>

The overhead of back-to-back
"Context Saving" and
"Context Restoring"
is eliminated

csrrw ra, CSR_JALMNXTl,ra A A
Interrupt (ID=30) Service Routine

:Y

csrrw ra, CSR_JALMNXTlra | - Interrupt (ID=29) Service Routine

e

csrrw ra, CSR_JALMNXTI,ra

Interrupt (ID=28) Service Routine

Return to the common code
<Restore Cintext>

Fig. 9.11: Interrupt tail-chaining

9.13.2 Vectored Processing Mode

9.13.2.1 Feature and Latency of Vectored Processing Mode
If the interrupt is vectored, once it is taken, the core will jump to the target address saved in the Vector Table Entry
directly, which is the corresponding interrupt service routine (C function) of the interrupt, as shown in Example for vectored

interrupt (page 37).

Main Program

main{
------- Interrupt (ID=30) is taken, the core Ilinterrupt (ID=30) Service Routine
_______ check the vector table, and jump Interrupt_30_handler () {
"""" to the correspondin
) .p g <Handler Program>
------- interrupt service routine <mret>
_______ }
}

Fig. 9.12: Example for vectored interrupt

Vectored Processing Mode has the following features:

* The core will jump directly to the interrupt service routine without context saving. Therefore, the latency of the
vectored interrupt is very short. Ideally, it only takes 6 cycles from the interrupt initiation to the execution of the
first instruction of the interrupt service routine (C function), because the hardware only need to perform one lookup
and jump.
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* For an interrupt service routine of a vectored interrupt, the indication” __attribute__ ((interrupt))” is required to
indicate compiler this C function is an interrupt service routine. Why this attribute is needed? Explained as below:

— In the vector processing mode, since the core does not save the context before jumping to the interrupt service
routine, theoretically the interrupt handler cannot call any sub-function which means the handler must be a leaf

function.

— If the interrupt service routine accidentally calls another sub-function, which means the routine is not a leaf
function, it will cause a function error because of context corruption.

— Inorder to avoid this accidental error, as long as the “__attribute__ ((interrupt))” is used to indicate this function
is an interrupt handler, the compiler will automatically detect if this function calls any sub-function. If it calls
any sub-function, the compiler will automatically insert a piece of code to save the context. Note: in this case,
although the function correctness is guaranteed, the overhead caused by context saving will actually increase
the latency of the response of the interrupt (equivalent to the non-vectored interrupt processing) and cause
the expansion of the code size. Hence, in practice, it is not recommended to call other sub-functions in the
interrupt service routine of a vectored interrupt.

9.13.2.2 Preemption of Vectored Interrupt

In vectored processing mode, the core does not perform any special operation before jumping to the interrupt service
routine, and the value of mstatus.MIE is updated to 0 by the hardware, which means the interrupt is global disabled and
no new interrupt will be taken once the core is handling the interrupt. Therefore, the vectored processing mode does not
support interrupt preemption by default. In order to support vectored interrupt preemption, a special stack-push operation is
necessary at the beginning of the interrupt service routine as shown in Example for vectored interrupt supported preemption

(page 38):

* First save the CSRs mepc, mcause, msubm to the stack. These CSRs are saved to ensure that subsequent interrupt
preemption can perform correctly, because the new taken interrupt will overwrite the values of mepc, mcause, and
msubm, so they need to be saved to the stack first.

* Re-enable the global interrupt enable bit, that is, set the mstatus.MIE to 1. After the global interrupt enable bit is
set, the new interrupt can be taken to allow the mechanism of interrupt preemption.

» At the end of the interrupt service routine, it is necessary to add the operation of context restoring. And before CSRs
mepc, mcause, and msubm are restored from the stack, the global interrupt enable bit must be set as 0 to guarantee
the atomicity of the restoring operation of CSRs mepc, mcause, and msubm (not interrupted by the new interrupt).

Main Program
main{

Interrupt (ID=30) is taken,
the core check the vector table,
and jump to the corresponding

Tum on the interrupt globally
(mstatus_MIE) , to allow the
interrupt preemption

interrupt service routine

// Interrupt (ID=30)
/I Service Routine
Interrupt_30_handler () {
<Push mepc>
<Push mcause>
<Push msubm>
<Tum on mstatus_ MIE>

<Interrupt Handler>

|

<Tum off mstaus_MIE>
<Pop msubm>

<Pop mcause>

<Pop mepc>

<mret>

Interrupt with higher level is
taken , the core
check the vector table , and jump
to the corresponding
interrupt service routine

I Interrupt (ID=31)
Il Service Routine
Interrupt_31_handler ()

<Handler Program>
<mret>

Fig. 9.13: Example for vectored interrupt supported preemption
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As described above, with the special processing, the vectored processing mode can support interrupt preemption, as shown
in Interrupt preemptions caused by three sequential vectored interrupts (page 39): assuming that the three interrupts 30,
31, 32 come sequentially, and the level of interrupt 32 is greater than the level of interrupt 31 which is greater than the
level of interrupt 30. Since then, the subsequent interrupts will preempt interrupts that were previously processed to form
interrupt preemptions.

Main program

Take Interrupt Jump to Interrupt (ID=30) Service Routine
i <Save Context>

1 Interrupt Preemptions Jump to Interrupt (ID=31) Service Rountine

| <Save Context>
\2
Interrupt Preemptions Jump to Interrupt (ID=32) Service Rountine

<Save Context>

\ '<Restore Context>
—

1

1

Il <Restore Context>

: <Restore Context>

Back to the main program

Fig. 9.14: Interrupt preemptions caused by three sequential vectored interrupts

9.13.2.3 Vectored Interrupt Tail-Chaining

For the vectored processing mode, the core does not save the context before jumping to the interrupt service routine, so
the meaning of “interrupt tail-chaining” is not significant. Therefore, the vectored processing mode does not support the
features of “interrupt tail-chaining”.
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TIMER Unit Introduction

10.1 TIMER Overview

The Timer Unit (TIMER for short) is used to generate the Timer Interrupt and Software Interrupt in Nuclei processor core.

10.2 TIMER Registers

The TIMER is a memory-mapped unit:
* For the base address of the TIMER unit, please refer to the specific databook of the Nuclei processor core.
» Registers and the corresponding offset in the TIMER unit are shown in The addresses offset of registers in the TIMER
unit (page 40)

Table 10.1: The addresses offset of registers in the TIMER unit

Offset Permis- Register Name Default Value Function Description
sion/Width

0x0 MRW/4B mtime_lo 0x00000000 Reflect the lower 32-bit value of
mtime.
Shadow copy of MTIME in
CLINT mode

0x4 MRW/4B mtime_hi 0x00000000 Reflect the upper 32-bit value of
mtime.
Shadow copy of MTIME in
CLINT mode

0x8 MRW/4B mtimecmp_lo OxFFFFFFFF Set the lower 32-bit value of
mtimecmp.
Shadow copy of MTIMECMP for
Ist hart in CLINT mode

0xC MRW/4B mtimecmp_hi OxFFFFFFFF Set the upper 32-bit value of
mtimecmp.
Shadow copy of MTIMECMP for
Ist hart in CLINT mode

OxFEC MRW/4B mtime_srw_ctrl 0x00000000 Control S-mode can access this
timer or not.

0xFFO MRW/4B msftrst 0x00000000 Generate soft-reset request.

0xFF8 MRW/4B mtimectl 0x00000000 Control some features of the time
counter.

O0xFFC MRW/4B msip 0x00000000 Generate the Software Interrupt.
Shadow copy of MSIP for 1st hart
in CLINT mode

continues on next page

40



Nuclei® RISC-V Instruction Set Architecture Specification

Table 10.1 — continued from previous page

Offset Permis- Register Name Default Value Function Description
sion/Width
0x1000 MRW/4B MSIP for Hart-0 0x00000000 Software Interrupt for 1st hart.
0x1004 MRW/4B MSIP for Hart-1 0x00000000 Software Interrupt for 2nd hart.
0x1008 MRW/4B MSIP for Hart-2 0x00000000 Software Interrupt for 3rd hart.
0x100c MRW/4B MSIP for Hart-3 0x00000000 Software Interrupt for 4th hart.
0x5000 MRW/8B MTIMECMP for | 0x00000000 M-mode timer compare register
Hart-0 for 1st hart.
0x5008 MRW/8B MTIMECMP for | 0x00000000 M-mode timer compare register
Hart-1 for 2nd hart.
0x5010 MRW/8B MTIMECMP for | 0x00000000 M-mode timer compare register
Hart-2 for 3rd hart.
0x5018 MRW/8B MTIMECMP for | 0x00000000 M-mode timer compare register
Hart-3 for 4th hart.
0xCFF8 MRW/8B MTIME 0x00000000 MTIME in CLINT mode
0xD000 SRW/4B SSIP for Hart-0 0x00000000 Supervisor Software Interrupt for
Ist hart.
0xD004 SRW/4B SSIP for Hart-1 0x00000000 Supervisor Software Interrupt for
2nd hart.
0xD008 SRW/4B SSIP for Hart-2 0x00000000 Supervisor Software Interrupt for
3rd hart.
0xDO00c SRW/4B SSIP for Hart-3 0x00000000 Supervisor Software Interrupt for
4th hart.
Note:

* Registers in the TIMER unit only support aligned read and write access with WORD size.

* In a design with multi cluster/core of Nuclei Core, each cluster/core has an independent input hartid signal, so the
hartid of 1st hart of this cluster/core is (0+OFFSET), OFFSET means the input number.

* The hardware can guarantee that the registers can only be accessed under M-mode.or S-Mode

The functionality of each register is described in the following sections.

10.2.1 Control S-mode can access timer or not through mtime_srw_ctrl

The register mtime_srw_ctrl is implemented to control S-mode can access mtime or not , as shown in mtime_srw_ctrl bit
fields (page 41).

Table 10.2: mtime_srw_ctrl bit fields

Field Bits Permission Default | Description
Value
Reserved 31:1 N/A N/A Reserved, ties to O
SRW 0 RW 0 Control S-mode can read or write timer registers or

not.
0: S-Mode can read/write all timer registers.
1: S-Mode can not read/write timer registers
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10.2.2 Time Counter Register mtime

The key points of TIMER unit are as follows:

* The TIMER implements a 64-bit register mtime, which is composed of {mtime_hi, mtime_lo}. This register reflects
the value of the 64-bit timer. The timer is turned on by default, so it will always count after reset.

* The increment frequency of the counter is controlled by the core’s input signal mtime_toggle_a or core’s always-on
clock input core_aon_clk. Please refer to the specific databook of the Nuclei processor core for details about this
signal.

10.2.3 Generate the Machine Timer Interrupt through mtime and mtimecmp

The TIMER unit can be used to generate the timer interrupt. The key points are as follows:

* The TIMER implements a 64-bit register mtimecmp, which is composed of {mtimecmp_hi, mtimecmp_lo}. This
register is used as the comparison value of the timer. If the value of mtime is greater than the value of mtimecmp,
then a timer interrupt is generated.

¢ If mtimect. CMPCLREN is set as 1, then the mtime will be automatically cleared to zero when the value of mtime
is greater than the value of mtimecmp, and then restart counting from zero.

e If mtimectl. CMPCLREN is set as 0, then the mtime will always increments normally. The software can clear the
timer interrupt by overwriting the value of mtimecmp or mtime (so that the value of mtimecmp is greater than the
value of mtime).

Note: The timer interrupt is connected to the ECLIC unit as unified interrupt management. Please see ECLIC
Unit Introduction (page 46) for details of ECLIC.

For Supervisor timer interrupt, please refer <RISC-V SSTC> for more details.

10.2.4 Control the Timer Counter through mtimectl

The register mtimectl is implemented to control the behaviors of timer counting , as shown in mtimectl bit fields (page 42).

Table 10.3: mtimectl bit fields

Field Bits Permission Default | Description
Value
Reserved 31:4 N/A N/A Reserved, ties to 0
HDBG 3 RW 0 Halt-on-debug Controls whether core’s stoptime bit

in debug CSR dcsr stops the timer counter:

If the files is 0, Timer counter ignores stoptime sig-
nal; if it is 1, assert stoptime in dcsr halts the timer
counter when core is in debug mode.

Note: this bit is implemented from 900 v3.8.2.
CLKSRC 2 RwW 0 Select the source of increment frequency.

If this field is 1, then the increment frequency is fre-
quency of core_aon_clk, otherwise the increment
frequency is controlled by mtime_toggle_a, please
refer to the specific databook of the Nuclei proces-
sor core for details about this signal.

CMPCLREN 1 RW 0 Control the timer count to clear-to-zero or not.

If this field is 1, then the mtime register will be
cleared to zero after generated timer interrupt, oth-
erwise it increments normally.

TIMESTOP 0 RW 0 Control the timer count or pause.

If this field is 1, then the timer is paused, otherwise
it increments normally.
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Note: If CMPCLREN is enabled, the timer interrupt request will be a pulse request. In this case, timer interrupt should be
set to edge-trigger mode.

10.2.5 Generating the Software Interrupt through msip/ssip

The TIMER unit can be used to generate the Software Interrupt. The register msip/ssip is implemented in the TIMER
unit as shown in msip/ssip bit fields (page 43), only the least significant bit of msip is an effective bit. This bit is used to
generate the software interrupt directly:

» The software generates the software interrupt by writing 1 to the msip/ssip register;
» The software clears the software interrupt by writing 0 to the msip/ssip register.

Note: the soft interrupt is connected to the ECLIC unit as unified interrupt management. Please see ECLIC Unit Introduc-
tion (page 46) for details of ECLIC.

Table 10.4: msip/ssip bit fields

Field Bits Permission Default | Description
Value
Reserved 31:1 N/A N/A Reserved, ties to 0
MSIP/SSIP 0 RW 0 This bit is used to generate the software interrupt

10.2.6 Generating the Soft-Reset Request

The TIMER unit can be used to generate the Soft-Reset request. The register msftrst is implemented in the TIMER unit as
shown in msftrst bit fields (page 43), only the least significant bit of msftrst is an effective bit. This bit is used to generate
the Soft-Reset request directly:

* The software generates the Soft-Reset request by writing 0x80000a5f to the msftrst register. Requiring to write such
a complicate number is to avoid the random mis-operation of software writing.

* The most significant bit of msftrst can only be clear by reset,so if the SoC reset the core in respond to Soft-Reset
request, then msftrst register will be reset (and cleared to zero).

Note: The core’s output signal sysrstreq (active high) is used to carry out the Soft-Reset request, the SoC should reset the
core (assert core_reset_n, not por_reset_n) in respond to the request. Please refer to the specific databook of the Nuclei
processor core for details about the signals sysrstreq, core_reset_n and por_reset_n.

Table 10.5: msftrst bit fields

Field Bits Permission Default | Description

Value
MSFTRST 31 RW 0 This bit is used to generate the Soft-Reset Request
Reserved 30:0 N/A N/A Reserved, ties to O
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11.1 PLIC Overview

11

PLIC Unit Introduction

For the Linux capable applications or symmetric multi-processor (SMP) applications, Nuclei processor core have been
equipped with a Platform-Level Interrupt Controller (PLIC), which is part of RISC-V standard privileged architecture
specification (riscv-privileged-20240411.pdf).

User can easily get the documents from Nuclei released doc-package or https://github.com/riscv/riscv-plic-spec/blob/

master/riscv-plic.adoc.

Note:

e The PLIC unit arbitrates the interrupt sources to the processor core (as the interrupt target) by a line as shown in
Interrupt Connection (for single-core with PLIC/ECLIC configured and PLIC enabled) (page 61).

* The PLIC need to be enabled by setting the LSB bits of CSR registers mtvec as CLINT mode. Please refer to Setting

CLINT or CLIC mode (page 23) for the details.

* The PLIC is functionally exclusive to ECLIC. The ECLIC and PLIC connection diagrams are as described in ECLIC,

PLIC and CIDU Connection Diagram (page 60).

11.2 PLIC Registers

The RISC-V standard privileged architecture specification does not specify the exact register offset for PLIC. The Nuclei
processor core implements PLIC as a memory-mapped unit:

* The base address of the PLIC unit, please refer to the specific databook of the Nuclei processor core.

» Registers and the corresponding offset in the PLIC unit are shown in The addresses offset of registers in the PLIC

unit (page 44).

Table 11.1: The addresses offset of registers in the PLIC unit

OFFSET WIDTH | PERMIS- DESCRIPTION DEFAULT
SION VALUE

0x00_0000 Reserved (source 0 does not exist)

0x00_0004 4B SRW Source 1 priority 0x0
0x00_0008 4B SRW Source 2 priority 0x0
0x00_OFFC 4B SRW Source 1023 priority 0x0
0x00_1000 4B SR Start of pending array 0x0

(bit 0-31)

continues on next page
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Table 11.1 — continued from previous page

OFFSET WIDTH | PERMIS- DESCRIPTION DEFAULT
SION VALUE

0x00_107C 4B SR Last word of pending array 0x0
(bit 992-1023)

0x00_2000 4B MRW Start of Hart 0 M-mode interrupt enables 0x0
(source 0-31)

0x00_207C 4B MRW Last word of Hart 0 M-mode interrupt enables
(source 992-1023)

0x00_2080 4B SRW Start of Hart O S-mode interrupt enables
(source 0-31)

0x00_20FC 4B SRW Last word of Hart 0 S-mode interrupt enables
(source 992-1023)

0x20_0000 4B MRW Hart 0 M-mode Priority 0x0
threshold

0x20_0004 4B MRW Hart 0 M-mode Claim/Complete 0x0

...... Reserved

0x20_1000 4B SRW Hart 0 S-mode Priority threshold 0x0

0x20_1004 4B SRW Hart 0 S-mode Claim/Complete 0x0

0x3FF_FFFC 4B MRW S-mode Priority/Pending Access 0x0
0x0 means S-mode can access all prior-
ity/pending registers.
0Ox1 means S-mode can not access all prior-
ity/pending registers.

Note:

* PLIC registers only support aligned access which is the size of word.

* The above “R” means read-only, and any write to this read-only register will be ignored without generating bus error.

* The PLIC unit may not be configured to support 1023 interrupt sources. If an interrupt is not present in the hardware,
the corresponding registers of memory locations appear hardwired to zero.

e The PLIC unit has M-mode and S-mode dedicated registers, which can be configured to trigger M-mode interrupt
or S-mode interrupt, by default, both M-mode and S-mode interrupts are all handled in M-mode, when Mideleg is
configured, S-mode interrupts will be delegated to be handled in S-mode, but the M-mode interrupts will still be

handled in M-mode regardless of the Mideleg.

» The hardware can guarantee that the registers can only be accessed under the corresponding privilege mode.

11.2. PLIC Registers
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ECLIC Unit Introduction

12.1 ECLIC Overview

For the real-time or microcontroller applications, the fast interrupt handling scheme is very important, hence, Nuclei
processor core have been equipped with an Enhanced Core Local Interrupt Controller (ECLIC), which is optimized based
on the RISC-V standard CLIC, to manage all interrupt sources.

Note:

* The ECLIC unit only serves one core and is private inside the core, as shown in ECLIC Connection (when ECLIC
is enabled) (page 47).

e The ECLIC need to be enabled by setting the LSB bits of CSR registers mtvec as ECLIC mode. Please refer to
Setting CLINT or CLIC mode (page 23) for the details.

* The ECLIC is functionally exclusive to PLIC. The ECLIC and PLIC connection diagrams are as described in ECLIC,
PLIC and CIDU Connection Diagram (page 60).

Interruptl Signals Interrupt2 Signals

| Level/Edge-Detection | Level/Edge-Detection

Interrupt Triggering Interrupt Triggering

.............................................................................................................

| P || Level/Priority | | P || Level/Priority |

Interrupt
Request

Max Level

Fig. 12.1: The logic structure of the ECLIC unit

The ECLIC unit is used to arbitrate multiple internal and external interrupts, send interrupt request to core, and support
the interrupt preemption. The registers of the ECLIC are described in The addresses offset of registers in the ECLIC unit
(page 49), and its structure is shown in The logic structure of the ECLIC unit (page 46) and the related concepts are as
follows:
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e ECLIC interrupt target

» ECLIC interrupt source

* ECLIC interrupt source ID

* ECLIC registers

» ECLIC interrupt enable bits

e ECLIC interrupt pending bits

* ECLIC interrupt level or edge triggered attribute

e ECLIC interrupt level and priority

* ECLIC interrupt vectored or non-vectored processing mode

e ECLIC interrupt threshold level

» ECLIC interrupt arbitration mechanism

» ECLIC interrupt response, preemption, tail-chaining mechanism

These will be detailed at next sections.

12.2 ECLIC interrupt target

The ECLIC unit arbitrates the interrupt sources to the processor core (as the interrupt target) by a line as shown in Figure

10-2.

ext_irq[4076]

CORE

ext_irq[1]

ext_irq[0]

Other Implementation

. Intemal Interrupts

mtime irq

stime irq

TIMER

msip irq

ssip irq

oRrNWATDN®©O

uCORE

Fig. 12.2: ECLIC Connection (when ECLIC is enabled)

12.3 ECLIC Interrupt Source

As shown in ECLIC Connection (when ECLIC is enabled) (page 47), the ECLIC unit can support up to 4096 interrupt

sources. The ECLIC unit has defined the following concepts for each interrupt source:

« ID
* IE
o IP
* Level or Edge-Triggered

* Level and Priority

12.2. ECLIC interrupt target
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¢ Vector or Non-Vector Mode

These concepts will be detailed at next sections.

12.4 ECLIC Interrupt Source ID

The ECLIC unit has assigned a unique ID to each interrupt source. For example, if a hardware implementation of the
ECLIC unit really configured to support 4096 interrupts, then the ID should be 0 to 4095. Note:

¢ In the Nuclei processor core, the interrupt IDs ranged from 0 to 18 are reserved for the core-specified internal
interrupts. 3 & 7 are fixed for Software Interrupt and Timer Interrupt in all Nuclei processor cores. Some Nuclei
core may have more internal interrupts, this table dose not show them, please check related chapter for more details.

» The interrupt source ID greater than 18 can be used by the user to connect external interrupt sources.

The details are shown in ECLIC interrupt sources and assignment (page 48).

Table 12.1: ECLIC interrupt sources and assignment

ECLIC interrupt ID Function Interrupt Source Description

0 Reserved This source is not used

1 Supervisor Software inter- | The s-mode software interrupt generated by the TIMER
rupt

2 Reserved This source is not used

3 Machine Software inter- | The m-mode software interrupt generated by the TIMER
rupt

4 Reserved This source is not used

5 Supervisor Timer interrupt | The s-mode timer interrupt generated by the Sstc

6 Reserved This source is not used

7 Machine Timer interrupt The m-mode timer interrupt generated by the TIMER

8 Reserved This source is not used

9 Reserved This source is not used

10 Reserved This source is not used

11 Reserved This source is not used

12 Reserved This source is not used

13 Reserved This source is not used

14 Reserved This source is not used

15 Reserved This source is not used

16 Reserved This source is not used

17 Reserved This source is not used

18 Reserved This source is not used

19 ~ 4095 External interrupt Normal external interrupt defined by users.

Note:

* Although the ECLIC unit can support up to 4096
interrupt sources per programming mode, the actual
number of supported interrupt sources is indicated
in the field clicinfo.NUM_INTERRUPT.
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12.5 ECLIC Registers

The ECLIC is a memory-mapped unit.

* The base address of the ECLIC unit, please refer to the specific databook of the Nuclei processor core.

* Registers and the corresponding offset in the ECLIC unit are shown in The addresses offset of registers in the ECLIC

unit (page 49)
Table 12.2: The addresses offset of registers in the ECLIC unit
Offset Permission Register Width
0x0000 RW cliccfg 8-bit
0x0004 R clicinfo 32-bit
0x000b RW mth 8-bit
0x1000+4*i RW clicintip[i] 8-bit
0x1001+4%*i RW clicintie[i] 8-bit
0x1002+4*i RW clicintattr([i] 8-bit
0x1003+4%*i RW clicintetl[i] 8-bit
Note:

7311

* The above “i” indicates the interrupt ID, an interrupt i has its own corresponding clicintip[i], clicintie[i], clicintattr[i],
and clicintctl[i] registers.

* ECLIC registers only support aligned access which is the size of byte, half-word or word.
* The above “R” means read-only, and any write to this read-only register will be ignored without generating bus error.

e The ECLIC unit may not be configured to support 4096 interrupt sources. If an index i is not present in the hardware,
the corresponding clicintip[i], clicintie[i], clicintctl[i] memory locations appear hardwired to zero.

* The address space of ECLIC registers is the range from 0x0000 to OxFFFF. The value in an address other than the
address listed in the above table is constant 0.

These registers are detailed in the next sections.

12.5.1 cliccfg

This cliccfg register is a global configuration register. The software can set global configurations by write this register.
cliccfg bit fields (page 49) describes the bit fields of this register.

Table 12.3: cliccfg bit fields

Field Bits Permission Default Value | Description

Reserved 7:5 R N/A Reserved, ties to 0.

nlbits 4:1 RW 0 Used to specified the bit-width of level and
priority in the register clicintctl[i]. Please see
ECLIC Interrupt Level and Priority (page 52)
for more details.

Reserved 0 R N/A Reserved, ties to 1.

12.5. ECLIC Registers
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12.5.2 clicinfo

The clicinfo register is a global info register. The software can query the global parameters by reading this register. clicinfo
bit fields (page 50) describes the bit fields of this register.

Table 12.4: clicinfo bit fields

Field Bits Permission Default Value | Description
Reserved 31:25 R N/A Reserved, ties to 0.
CLICINTCTLBITS | 24:21 R N/A Used to specify the effective bit-width

the register clicintctl[i]. Please see
ECLIC Interrupt Level and Priority
(page 52) for more details.

VERSION 20:13 R N/A Hardware implementation version
number.
NUM_INTERRUPT | 12:0 R N/A Number of interrupt sources supported
by the hardware.
12.5.3 mth

The mth register is used the set the target interrupt threshold level. The software can set the target interrupt threshold level
by writing this register. mth bit fields (page 50) describes the bit fields of this register.

Table 12.5: mth bit fields

Field Bits Permission Default Value | Description
mth 7:0 RW N/A Target threshold level register. Please see ECLIC Interrupt
Threshold Level (page 54) for more details.

12.5.4 clicintipli]

The clicintip[i] register is the pending flag register for the interrupt source. clicintip[i] bit fields (page 50) describes the
bit fields of this register.

Table 12.6: clicintip[i] bit fields

Field Bits Permission Default Value | Description

Reserved 7:1 RO N/A Reserved, ties to 0

1P 0 RwW 0 Interrupt source pending flag. Please see ECLIC In-
terrupt Pending Bit (IP) (page 51) for more details.

12.5.5 clicintie[i]

The clicintie[i] register is the enable bit register for the interrupt source. clicintie[i] bits fields (page 50) describes the bit
fields of this register.

Table 12.7: clicintie[i] bits fields

Field Bits Permission Default Value | Description

Reserved 7:1 R N/A Reserved, ties to 0.

IE 0 RW 0 Interrupt enable bit. Please see ECLIC Interrupt En-
able Bit (IE) (page 51) for more details.
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12.5.6 clicintattr[i]

The clicintattr[i] register is used to indicate the attribute of the interrupt source. The software can set the attribute of the
interrupt source by writing this register.:ref:table-clicintattr[i]_bit_fields describes the bit fields of this register.

Table 12.8: clicintattr[i] bits fields

Field Bits Accessibility Default Value | Description

Reserved 7:6 R N/A Reserved, ties to 2°b11

Reserved 5:3 R N/A Reserved, ties to 0

trig 2:1 RW 0 Used to set the level or edge triggered attribute of

the interrupt source. Please see ECLIC Interrupt
Source Level or Edge-Triggered Attribute (page 52)
for more details.

shv 0 RW 0 Used to set whether the interrupt is vectored or non-
vectored. Please see ECLIC Interrupt Vectored and
Non-Vectored Processing Mode (page 54) for more
details.

12.5.7 clicintctl[i]

The clicintctl[i] register is the control register of the interrupt source. The software can set the level and priority by writing
this register. The level and priority field are dynamically allocated based on the value of cliccfg.nlbits. Please see ECLIC
Interrupt Level and Priority (page 52) for more details.

12.6 ECLIC Interrupt Enable Bit (IE)

As shown in The logic structure of the ECLIC unit (page 46), the ECLIC unit has allocated an interrupt enable bit (IE) for
each interrupt source which is the field clicintie[i].IE whose function are the follows:

» The clicintie[i] register of each interrupt source is a both readable and writeable memory-mapped register. Hence
the software can program it.

« If the clicintie[i] register is programmed to 0, it means that this interrupt source is masked.

« If the clicintie[i] register is programmed to 1, it means that this interrupt is enabled.

12.7 ECLIC Interrupt Pending Bit (IP)

As shown in The logic structure of the ECLIC unit (page 46), the ECLIC unit has allocated an interrupt pending bit (IP)
for each interrupt source which is the field clicintip[i].IP whose function are the follows:

« If the IP bit of one interrupt source is 1, it means this interrupt is triggered. The trigger condition of the interrupt
source depends on whether this interrupt is level-triggered or edge-triggered as described in ECLIC Interrupt Source
Level or Edge-Triggered Attribute (page 52).

* The IP bit of the interrupt source is both readable and writeable. The behavior of the software writing IP bits
depends on whether the interrupt source is level or edge triggered. Please see ECLIC Interrupt Source Level or
Edge-Triggered Attribute (page 52) for more details.

* For edge-triggered interrupt source, the IP bit may be cleared by the hardware itself. Please see ECLIC Interrupt
Source Level or Edge-Triggered Attribute (page 52) for more details.
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12.8 ECLIC Interrupt Source Level or Edge-Triggered Attribute

As shown in The logic structure of the ECLIC unit (page 46), each ECLIC interrupt source can be set as level triggered or
edge triggered by setting the value of clicintattr[i].trig. The key points are the followings:

* When clicintattr[i].trig[0] == O, this interrupt source is set as a level-triggered interrupt.

— If the interrupt source is set as level-triggered, the IP bit reflects the level of the interrupt source in real time, so
software writes to this IP bit is ignored, that is, the software cannot set or clear the IP bit by writing operation.
If the software needs to clear the interrupt pending bit, it can only be done by clearing the original source of
the interrupt.

* When clicintattr[i].trig[0] == 1 and clicintattr[i].trig[1] == 0, this interrupt source is set as a rising edge-triggered
interrupt:

— If the interrupt source is set as rising edge-triggered, when the ECLIC detects the rising edge of the interrupt
source, the interrupt source is triggered in the ECLIC, and the IP bit of the interrupt source is asserted.

— If the interrupt source is set as rising edge-triggered, the IP bit is writeable for the software, which means the
software can set or clear the IP bit by writing operations.

* When clicintattr[i].trig[0] == 1 and clicintattr[i].trig[1] == 1, this interrupt source is set as a falling edge-triggered
interrupt:

— If the interrupt source is set as falling edge-triggered, when the ECLIC detects the falling edge of the interrupt
source, the interrupt source is triggered in the ECLIC, and the IP bit of the interrupt source is asserted.

— If the interrupt source is configured as falling edge-triggered, the IP bit is writeable for the software, which
means the software can set or clear the IP bit by writing operations

Note: Forrising or falling edge-triggered interrupt, in order to improve the efficiency of the interrupt processing, when the
interrupt is taken (for vectored interrupt, the core jumps to the corresponding Interrupt Service Routine means taken; for
non-vectored interrupt, the core jumps to the command entry and then operates the CSR mnxti or jalmnxti means taken),
the hardware of the ECLIC will clear the IP bit automatically, the software doesn’t need to clear the IP bit.

12.9 ECLIC Interrupt Level and Priority

As shown in The logic structure of the ECLIC unit (page 46), each interrupt sources of the ECLIC can be configured with
specified level and priority, and the key points are the followings:

» The register clicintctl[i] of each interrupt source is 8-bit width theoretically, and effective bits actually implemented
by the hardware are specified by the CLICINTCTLBITS in the register clicinfo. For example, if the value of the
clicinfo.CLICINTCTLBITS field is 6, it means that only the upper 6-bit of the clicintctl[i] register are true valid bits,
and the lowest 2 bits are tied to 1, as shown in clicintctl[i] format example (page 53).

— Note: the field CLICINTCTLBITS is a readable constant value, and the software cannot overwrite it. The
theoretically reasonable value range of it is 2 <= CLICINTCTLBITS <= 8. The actual value is determined by
the specified hardware implementation. Please refer to the specific databook of the Nuclei processor core.

* The effective bits of clicintctl[i] register have two dynamic fields, which are used to specify the level and the priority
of the interrupt source. The width of the level filed is defined by field nlbits in cliccfg. For example, if the value of
cliccfg.nlbits is 4, it means that the upper 4-bit of the effective bits in clicintctl[i] is the level field while the other
lower effective bits is the priority field, as shown in the example in clicintctl[i] format example (page 53).

— Note: the field cliccfg.nlbits is both readable and writeable, which means the software can change its value.
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Level

nibits=4 —»  Priority

clicintctl[i] 1 1

/7 6 5 4 3 2 1 O

<— CLICINTCTLBITS=6 —

Fig. 12.3: clicintctl[i] format example

* The key points of interrupt level are the followings:

— The value of level is read in a left-aligned manner. Except the effective bits (defined by the value of clic-
cfg.nlbits), the low ineffective bits are all filled with the constant 1, as shown in the example in Example for
the decoding of level (page 53).

% Note: if cliccfg.nlbits > clicinfo. CLICINTCTLBITS, it means that the number of bits indicated by nlbits
exceeds the effective bits of the clicintctl[i] register, and the excess bits are all filled with the constant 1.

% Note: if cliccfg.nlbits = 0, the value of level will be regarded as a fixed value 255. As shown in Examples
of cliccfg settings (page 54).

— The greater value of level, the higher priority, note:

% Higher-level interrupts can preempt lower-level interrupts, which is called as interrupt preemption, as
detailed in (CLIC mode) Interrupt Preemption (page 32).

% If there are multiple pending interrupts (IP is 1), then the ECLIC needs to make an arbitration to determine
which interrupt needs to be sent to the core to take. The arbitration needs to take the level of each interrupt
source into the consideration. Please see Interrupt Levels, Priorities and Arbitration (page 26) for details.

#nlbits Encoding The value of level

1 L....... 127, 255
(=11111111)

2 LL...... 63, 127, 191, 255
(=LL111111)

3 LLL..... 31, 63, 95, 127, 159, 191, 223, 255
(= LLL11111)

4 LLLL.... 15, 31,47, 63,79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255
(= LLLL1111)

“L” indicates the field of level

“.” indicates the rest bits and are filled with the constant 1

Fig. 12.4: Example for the decoding of level
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Examples of cliccfg settings:

CLICINTCTLBITS nlbits clicintetl[i] the value of level
0 2 255
1 2 L.o...... 127, 255
2 2 LL...... 63,127,191, 255
3 3 LLL..... 31, 63, 95,127,159, 191, 223, 255
4 1 LPPP. ... 127, 255

Fig. 12.5: Examples of cliccfg settings

* The key points of the interrupt priority are the follows:

— The value of priority is also read in a left-aligned manner. Except the effective bits (clicinfo.CLICINTCTLBITS
- cliccfg.nlbits), the low ineffective bits are all filled with the constant 1.

— The greater the value of the priority, the higher priority, note:

% The priority of the interrupt does not participate in the judgment of the interrupt preemption, which means
whether the interrupt can be preempted or not has nothing to do with the value of the priority of the
interrupt.

# When multiple interrupts are simultaneously pending, the ECLIC needs to make an arbitration to deter-
mine which interrupt is sent to the core to handle. The arbitration needs to refer to the value of level/priority
of each interrupt source. Please see ECLIC Interrupt Arbitration Mechanism (page 55) for details.

12.10 ECLIC Interrupt Vectored and Non-Vectored Processing Mode

Each interrupt source of the ECLIC can be set to vectored or non-vectored (via the shv field of the register clicintattr[i]).
The key points are the followings:

« If the interrupt is set as vectored (clicintattr[i].shv==1), the core will directly jump to the target address stored in the
vector table entry when the interrupt is taken. For a detailed description of the interrupt vectored processing mode,
please see Vectored Processing Mode (page 37).

* If the interrupt is set as non-vectored (clicintattr[i].shv==0), the core will jump to the common base entry shared by
all interrupts when the interrupt is taken. For a detailed description of the interrupt non-vectored processing mode,
please see Non-Vectored Processing Mode (page 34).

12.11 ECLIC Interrupt Threshold Level

As shown in The logic structure of the ECLIC unit (page 46), the ECLIC can set the threshold level (mth) of a specific
interrupt threshold level. The key points are as follows:

» The mth register is an 8-bit register, all bits are readable and writable, and the software can write this register to set
the threshold. Note: this threshold indicates a level value.

* Only when the level of the interrupt finally arbitrated by the ECLIC is higher than the value in the mth register, the
interrupt can be sent to the processor core.
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12.12 ECLIC Interrupt Arbitration Mechanism

The principles for the ECLIC to arbitrate all of its interrupt sources are as follows:
* Only interrupt sources that meet all of the following conditions can participate in the arbitration:
— The enable bit (clicintie[i]) of the interrupt source must be 1.
— The pending bit (clicintip[i]) of the interrupt source must be 1.
* The rules for the arbitration among all participated interrupt sources are:
— First, check the level, the larger the level value of the interrupt source, the higher the arbitration priority.

— If the level is equal, then check the priority, the interrupt source that has greater value of priority will have
higher arbitration priority.

— If both level and priority are equal, then the ID is taken into the consideration. The interrupt source with the
larger interrupt ID has higher arbitration priority.

* If the level value of the interrupt source that wins the arbitration has a greater value than the level value in mth, then
the interrupt request signal to the core will be asserted.

12.13 ECLIC Interrupt Taken, Preemption and Tail-Chaining

After the ECLIC interrupt request is sent to the processor core, the core will respond to it. Through the coordination by
the ECLIC and the core, the operation of interrupt preemption and tail-chaining are supported. Please see (CLIC mode)
Interrupt Preemption (page 32), (CLIC mode) Interrupt Tail-Chaining (page 33), and Non-Vectored Processing Mode
(page 34) for more details.
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CIDU Introduction

13.1 CIDU Overview

As previous chapters introduce that ECLIC is very suitable for real time application and it only applies to a single core,
and PLIC is very suitable for Linux application (single core or SMP). If there is a SMP system which is designed for real
time application or both Linux and real time application, a Cluster Interrupt Distribution Unit (CIDU) is needed in these
scenarios and Nuclei processor core can optionally support CIDU.

For the location and connection of CIDU within the cluster, please refer to the Interrupt Connection (for multi-core with
ECLIC and CIDU) (page 63) and Interrupt Connection (for multi-core with ECLIC/PLIC and CIDU) (page 64). The CIDU
is used to distribute external interrupts to the core’s ECLIC, also it provides Inter Core Interrupt (ICI) and Semaphores
Mechanism. Its features are as follows:

 Support up to 16 Cores in one cluster
* Support up to 4096 external interrupts sources
* Support up to 16 Inter Core Interrupts

* Support 32 Semaphores

13.2 CIDU Registers and Description

Table 13.1: CIDU Registers list

Addr RW Name Descriptions

0x0 WI1C/R COREOQO_INT_STATUS Core0’s Inter Core Interrupt status register

0x7c WI1C/R CORE31_INT_STATUS Core31’s Interrupt Status Register

0x80 RwW SEMAPHOREQO First Semaphore register to use.

0xFC RwW SEMAPHORE31 Last Semaphore register to use.

0x3FFC WO ICI_SHADOW_REG ICI Interrupt source core ID and target core ID

0x4000 RW INTO_INDICATOR Indicate interruptO0 can be received by which
cores

0x7FFC RW INT4095_INDICATOR Indicate interrupt4095 can be received by which
cores

0x8000 RW INTO_MASK Mask the INTO to the cores or not when the INTO
Indicator is on

0xBFFC RW INT4095_MASK Mask the INT4095 to the cores or not when the
INT4095 Indicator is on.

continues on next page
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Table 13.1 — continued from previous page

Addr RW Name Descriptions
0xC084 RO CORE_NUM Indicate the static configuration core num in the
cluster.
0xC090 RO INT_NUM Indicate the static configuration interrupt number
Note:

» CIDU is amodule within a cluster while IDU can be SOC level module to manage the SOC level interrupt/NMI/event
distribution and provide the interrupt cluster interrupt and semaphores. This document will not describe IDU part,
if users want to know detail of IDU, please contact Nuclei Support.

* In a Nulcei multi-core system, each core has an unique serial number, the serial number starts from 0 and is contin-
uous, also the number is static and has a direct mapping with the CSR mhartID. In this chapter, the number is called
Core Num or Core ID.

* In a Nuclei Subsystem Design with multi cluster of Nuclei Core, then the Core Num or Core ID of this chapter is
only the one field (bits 0 ~ 7) of CSR mhartID.

13.3 CIDU External Interrupt Distribution

The CIDU acts as an interrupt distributor in the cluster, it can broadcast all external interrupts to all target cores or let the
first coming core to claim the specific interrupt.

13.3.1 Interrupt Distribution Broadcast Mode

If user wants to use CIDU to broadcast the external interrupt to some/all target cores, it just needs to turn on the corre-
sponding bits of the related interrupt’s INTn_INDICATOR register. The register detail description is as follows:

Table 13.2: INTn_INDICATOR Register Description

Field Name Bits Reset Value Description
INTn_INDICATOR core_num_1:0 0x1 Each bit indicates the core can receive this inter-
rupt or not. 1 means yes, 0 means no.

13.3.2 Interrupt Distribution First Come First Claim Mode

If user wants to use CIDU to broadcast the external interrupt to some/all target cores, then let the first coming core to claim
the interrupt, beside the INTn_INDICATOR register, it also needs INTn_MASK register to cooperate. The INTn_MASK
register’s description is as follows:

Table 13.3: INTn_MASK Register Description

Field Name Bits Reset Value Description

INTn_MASK core_num_1:0 {core_num{1}} Each bit indicates it should mask the indicator
bit or not. 1 means no, 0 means yes.

Can only be written when its value is all 1 (re-
set value) or be written as all 1.

The key points are the followings:
* Write the right value to INTn_Indicator register.

* When the external interrupt n comes, it will broadcast to all targeted cores. In the interrupt n’s handler of all cores,
firstly set the bit[Core ID] as 1°b1 and clear other bits as 1’b0 in INTn_MASK, then read back the INTn_MASK
value, if bit[Core ID] is 1°bl, it means it claim the interrupt successfully, then continues to handle the interrupt
normally; if not, it means other core has claimed the interrupt, so quit the interrupt handler.
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* When a core claims the interrupt successfully and handle the interrupt, before executing mret/sret, it should write
the reset value (all 1) to INTn_MASK.

13.4 CIDU Inter Core Interrupt

Inter Core Interrupt (ICI) means that one core can send interrupt to another core in a multi-core cluster. CIDU ICI belongs
to Internal Interrupt (please refer to Interrupt Type (page 24) and Internal Interrupt (page 25) to review the concept) ,
and the CIDU ICI Interrupt ID is fixed to 16. CIDU implements a good Inter Core Interrupt mechanism with two kind
registers as follows:

Table 13.4: ICI_SHADOW_REG Register Description

Field Name Bits Reset Value Description

REV_CORE_ID core_num-1:0 0x0 The Core ID which receives this Inter Core
Interrupt

SEND_CORE_ID core_num+15:16 0x0 The Core ID which sends this Inter Core
Interrupt

Table 13.5: COREn_INT_STATUS Register Description

Field Name

Bits

Reset Value

Description

COREn_INT_STATUS

core_num-1:0

0x0

inter core interrupt status register of

core n, bit 0 means core0 and bit 31
means core 31. Each bit can be cleared
by writing 1.

If Core n (Core ID=n) wants to send the ICI to Core m (Core ID =m), then the flow is simple:

L]
.

Note:

L]

Core n writes the value n to bit[31:16] and writes the value m to bit[15:0] in register [CI_SHADOW_REG.
Then CIDU will write the n to COREm_INT_STATUS register and trigger ICI to Core m automatically.

When Core m receives the ICI and enter the ICI Interrupt Service Routine (ISR), then it can query the bit[n] in
Corem_INI_STATUS register and will get that the current ICI is triggered by Core n. And the Core m also need to
write 1 to clear the bit n of the Corem_INT_ STATUS before the ISR returns.

The ICI_SHADOW_REG is Write Only register, if multiple cores write this register simultaneously, it will record
all the write behavior (won’t miss any) and handle them properly.

In the ISR of ICI, it should clear the corresponding bit/bits of its own COREn_INT_STATUS. If the ISR has finished
the job of Core_n’s ICI, then clear Core n; if it has finished Core_n and Core_m’s, then clear both the bits and etc.

RISC-V Spec CLINT defines a Software Interrupt per core and Nuclei Processor Core’s Timer Module implements
it, upstream RISC-V Linux already adopt CLINT’s Software Interrupt to implement Inter-Processor Interrupt (IPI).
But currently Software Interrupt has only 1-bit pending bit, it is hard to tell which cores send the ICI while CIDU
well enhances it. User can choose CLINT Software Interrupt or CIDU to implement ICI by request.

13.5 CIDU Semaphore

CIDU also provides up to 32 semaphores to let users to configure and use. And Semaphore is very useful for multi-core
cluster or multi-cluster without SMP enable. The related register is as follows:

Table 13.6: SEMAPHOREnN Description

Field Name

Bits Reset Value Description

CORE_STATUS

Oxf Reset value is 0xf, other value means the
specific core owns the semaphore.

3:0

continues on next page
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Table 13.6 — continued from previous page

Field Name Bits Reset Value Description

CLUSTER_STATUS 9:4 0x3f Reset value is 0x3f, other value means
the specific cluster owns the semaphore.

Reserved 31:10 0 Reserved.

The key points of software to use semaphores are the followings:

» All Cores in the clusters agree on using SEMAPHORE_n register to protect a critical resource (an UART device for
example).

* If Core m of Cluster k wants to access the critical resource, it should try to own the SEMPAPHORE_n register by
writing [k, m], then read the SEMAPHORE_n value and compare with the value with original [Cluster_ID, Core
ID], if matches, then it owns the semaphore successfully and can access the critical resource; if it not matches,
obviously it does not own the semaphore and can’t access the critical resource.

* When the Core m of Cluster k owns the register SEMPAPHORE_n and finishes the job related to the critical resource,
then it should release the register by write 0x3ff.
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ECLIC, PLIC and CIDU Connection Diagram

The ECLIC and PLIC are independently configurable, so they can be co-existed or not, depends on configurations. The
key points are as followings:

¢ For the single-core real-time or micro-controller applications, it is recommended to just have ECLIC configured, as
depicted in Interrupt Connection (for single-core with ECLIC configured only) (page 61)

* For the single-core Linux capable applications, it is recommended to configure PLIC. But in this case, the ECLIC
can also be configured, hence, PLIC and ECLIC become coexisting.

— If the ECLIC is enabled by software, then the interrupts will be handled by ECLIC, and the PLIC will be
bypassed, as depicted in Interrupt Connection (for single-core with PLIC/ECLIC configured and PLIC enabled)

(page 61).

% In this mode, the hardware of UX class core can also worked as microcontroller, i.e., Nuclei UX class core
is downward-compatible to Nuclei NX class core.

— If the ECLIC is disabled by software, then the interrupts will be handled by PLIC, and the ECLIC will be by-
passed, as depicted in Interrupt Connection (for single-core with PLIC/ECLIC configured and ECLIC enabled)

(page 62).

¢ For the symmetric multi-processor (SMP) Linux capable applications, it is recommended to just have PLIC config-
ured only, as depicted in Interrupt Connection (for multi-core with PLIC configured only) (page 62).

 For the symmetric multi-processor (SMP) real-time or micro-controller applications, it is recommended to have
CIDU for cluster level and ELIC for core level configured, as depicted in Interrupt Connection (for multi-core with
ECLIC and CIDU) (page 63).

¢ For the symmetric multi-processor (SMP) to run both Linux and real-time or micro-controller applications, it is rec-
ommended to have CIDU, ECLIC and PLIC . As depicted in Interrupt Connection (for multi-core with ECLIC/PLIC
and CIDU) (page 64).

Note:

In the flowing diagrams, each core may have other implementation related Internal Interrupts, but we only
show the Software Interrupt and Timer Interrupt for short.
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14.1 Single-core with ECLIC configured only

CORE(with ECLIC only)

ext_irq[4076]

ext_irq[1]

ext_irq[0] 19
18
17
e uCORE
14
L ECLIC
11
10
. . ]
mtime irq 8
7
6
5
TIMER msip irq :
2
1
0

Fig. 14.1: Interrupt Connection (for single-core with ECLIC configured only)

14.2 Single-core with PLIC/ECLIC configured and PLIC enabled

CORE(under CLINT Mode)
ECKIC

ext_irq[4076] zggi PLIC meip
ext_ir(;["l.]. 2
ext_irq[0] é

uCORE
mtime irq mtip
TIMER msip irq msip

Fig. 14.2: Interrupt Connection (for single-core with PLIC/ECLIC configured and PLIC enabled)
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14.3 Single-core with PLIC/ECLIC configured and ECLIC enabled

CORE(under ECLIC Mode)

PEAC
ext_irq[4076] P
...... 4094
ext_irq[1]
ext_irq[0] ig
18
17
1 uCORE
14
BECLIC
11
10
. . ]
mtime irq 8
7
6
5
TIMER msip irq g
2
1
0

Fig. 14.3: Interrupt Connection (for single-core with PLIC/ECLIC configured and ECLIC enabled)

14.4 Multi-core with PLIC configured only

Multi-CORE
(under CLINT Mode)
ext_irq[4076] 4095
...... 4094 PLIC
ext_irq[1] 2
ext_irq[0] é
uCORE(0)
TIMER melp
mtip
uCORE(n-1)
msip

Fig. 14.4: Interrupt Connection (for multi-core with PLIC configured only)
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Nuclei® RISC-V Instruction Set Architecture Specification

14.5 Multi-core with ECLIC and CIDU

ext_irq[n]
ext_irg[1]
ext_irg[1]

SMP Cluster

TIMER

N CIDU

Core(0) T
uCore(0)
ECLIC —>|
‘\
e
Core(n-1) ( )
uCore(n-1)
ECLIC

Fig. 14.5: Interrupt Connection (for multi-core with ECLIC and CIDU)

14.5. Multi-core with ECLIC and CIDU
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14.6 Multi-core with ECLIC/PLIC and CIDU

Core(0)
SMP Cluster
- >
uCore(0)
r v EcLic [
Ar———
P
- A CIDU a Core(1)
e
-
uCore(1)
- S ECLIC [
ext_irq[n] \
...... Nl |
ext_irq[1]
Core(2)
ext_irq[0] TIMER
-
uCore(2)
- S| ECLIC [—X
J
J
~ A PLIC -
Core(3)
uCore(3)
- | EcLic

Fig. 14.6: Interrupt Connection (for multi-core with ECLIC/PLIC and CIDU)
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15

PMP Introduction

15.1 PMP Overview

Nuclei processor core can optionally support the PMP (Physical Memory Protection) and Smepmp features, which is part
of RISC-V standard privileged architecture specification.

15.2 PMP Specific Features to Nuclei Core

In order to simplify the hardware implementation, or there are some features are intrinsically hardware implementation
relevant, Nuclei processor core have some PMP specific features, which is detailed at next sections.

15.2.1 Configurable PMP Entries Number

RISC-V standard privileged architecture specified the number of PMP entries up to 16, but in the real hardware the PMP
entries is limited. Nuclei processor core have the PMP entries number configurable at the build time, please refer to the
specific databook of the Nuclei processor core.

For those PMP CSR registers relevant to non-existed PMP entries, they are tied to zeros. For example, if the PMP Entries
Number is configurable to 8, then the PMP entry 9 ~ 16 relevant CSR registers are tied to zeros.

15.2.2 Configurable PMP Grain
RISC-V standard privileged architecture allows platform to define its own PMP grain, please refer to the RISC-V privileged

specification for more details of this PMP grain definitions. Nuclei processor core have the PMP grain configurable at the
build time, please refer to the specific databook of the Nuclei processor core.

15.2.3 Support TOR mode in A field of pmpcfg<x> registers

RISC-V standard privileged architecture specified 4 types of modes in A field of pmpcfg<x> registers. Nuclei processor
core already supports the TOR mode in A field of pmpcfg<x> registers.
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15.2.4 Corner cases for Boundary Crossing

Since the RISC-V standard privileged architecture specified the PMP regions as naturally aligned power-of-2 regions
(NAPQOT), but in the Nuclei processor core hardware implementations, there might be unaligned access crossing the bound-
ary, which is handled in this way:

¢ If it is normal load/store instructions:

— If the processor core is configured to not support the unaligned memory access, then it will trigger address
misaligned exception.

— If the processor core is configured to support the unaligned memory access, then hardware will break the
unaligned access into multiple byte or half-word aligned memory accesses (called micro-operations), each
micro-opertation will be checked with PMP, if violated PMP permission, it will trigger Load or Store access
fault exception, and the exception is imprecise.

o If it is AMO/LR/SC instructions:

— Since the RISC-V standard privileged architecture specified AMO/LR/SC instructions definitely not support
the unaligned memory access, hence it will trigger address misaligned exception.

e If it is the instruction fetching, since the processor core will always break the instruction fetching as the aligned
memory access (e.g., 32bits or 64bits aligned), each aligned memory access will be checked with PMP, if violated
PMP permission, it will trigger instruction access fault exception, and the exception is precise.

15.2. PMP Specific Features to Nuclei Core 66



16

TEE Introduction

16.1 Revision History

Rev. Revision Date Revised Content
1.0.0 2019/11/12

1. Initial Release.

1.0.1 2021/02/01
1. Add sdcause in 2.2.
2. Modify some typos related with user mode and supervisor
mode.
1.1.0 2023/02/08

1. Nuclei TEE follows RISC-V Ssmpu Extension Spec.

16.2 TEE Introduction

Nuclei provides the TEE (Trusted Execution Environment) to achieve better isolation for implementing supervisor-level
interrupt/exception handling and sPMP, the sPMP basically follows RISC-V Ssmpu Extension v0.9.0.

With TEE, it is flexible to isolate machine-level interrupt/exception from lower privileged-level interrupt/exception.

When the TEE is configured, and the outer execution environment has delegated specified interrupts and exceptions to
supervisor-level, then hardware can transfer control directly to a supervisor-level trap handler without invoking the outer
execution environment. Since then, users have more flexibility to define the behavior of hardware when an interrupt or
exception is taken. Users can delegate the specified exceptions through the TEE. As for interrupts, with the TEE, users can
delegate the designated interrupts only when ECLIC is configured, please refer ECLIC register clicintattr in later chapter.
The NMI (Non-maskable-interrupt) cannot be trapped to the supervisor-mode or user-mode for any configuration.

Moreover, with TEE, it enables S-mode OS to limit the physical addresses accessible by U-mode software.

When the TEE is configured, sSPMP entries can be set to achieve better isolation between OS (running on S-mode) from user
software (running on U-mode), and to achieve better scalability of PMP-based TEE/enclave with smaller TCB (Trusted
Computing Base).
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16.3 TEE Related CSRs

16.3.1 Added CSRs List For The TEE

Based on the basic CSRs, the TEE has added some CSRs as shown in following table. They can be classified to following
as the following five categories:

e RISC-V Standard S Mode CSRs:

status, sie, stvec, scouteren, sscratch, spec, scause, stval, sip, satp

medeleg, mideleg
¢ Nuclei customized CSRS for S-mode PMP:

spmpcfg<x>, spmpaddr<x>

Stvt, snxti, sintstauts, stvt2

* Nuclei customized S-mode CSRs for interrupt and exception:

RISC-V Standard M Mode CSRs for S-mode and trap:

RISC-V CLIC Draft Extended for S-mode:

Jalsnxti, sscratchcsw, sscratchcswl, pushscause, pushsepc, sdcause

Table 16.2: Added CSRs for the TEE

CSR Type Number Privilege | Name Description
RISC-V 0x100 SRW sstatus Supervisor status register
Standard
CSR
0x104 SRW sie Supervisor interrupt-enable register
0x105 SRW stvec Supervisor trap handler base address
0x106 SRW scounteren Supervisor counter enable
0x140 SRW sscratch Scratch register for supervisor trap handlers
0x141 SRW sepc Supervisor exception program counter
0x142 SRW scause Supervisor trap cause
0x143 SRW stval Supervisor trap value register
0x144 SRW sip Supervisor interrupt pending
0x180 SRW satp Supervisor address translation and protection
0x302 MRW medeleg Machine exception delegation register
0x303 MRW mideleg Machine interrupt delegation register
Nuclei 0x1A0 SRW spmpcfg0 Supervisor physical memory protection configura-
Customized tion
CSRs
0x1A1 SRW spmpcfgl Supervisor physical memory protection configura-
tion
0x1A2 SRW spmpcfg2 Supervisor physical memory protection configura-
tion
0x1A3 SRW spmpcfg3 Supervisor physical memory protection configura-
tion
0x1B0O SRW spmpaddr0 Supervisor physical memory protection address
register
0x1B1 SRW spmpaddrl Supervisor physical memory protection address
register
.. SRW e ..
(0x1BO+n) | SRW spmpaddrn Supervisor physical memory protection address
register
0x107 SRW stvt Supervisor Trap-handler vector table base address
0x145 SRW snxti Supervisor interrupt handler address and enable

modifier

continues on next page

16.3. TEE Related CSRs
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Table 16.2 — continued from previous page

CSR Type Number | Privilege | Name Description

0x146 SRW sintstatus Supervisor current interrupt level

0x148 SRW sscratchcsw Scratch swap register for multiple privilege modes

0x149 SRW sscratchcswl Scratch swap register for supervisor interrupt levels

0x947 SRW jalsnxti Jumping to next supervisor interrupt handler ad-
dress and interrupt-enable register

0x948 SRW stvt2 ECLIC non-vectored supervisor interrupt handler
address register

0x949 SRW pushscause Push scause to stack

0x94a SRW pushsepc Push sepc to stack

0x9c0 SRW sdcause Detail infromation for scause

16.3.2 RISC-V Standard CSR For TEE

16.3.2.1 sstatus

The sstatus register is a SXLEN read/write register the lower 32-bits formatted as shown in sstatus register (page 69). The
sstatus register keeps track of and controls the hart’s current operating state.

31 18 17 15 14 13 12 9 8 7 6 5 4 2 1 0

SD SUM FS SPP SPIE SIE

Fig. 16.1: sstatus register

The supervisor interrupt-enable bit SIE indicates supervisor-level interrupts are disabled when it is clear. The value of SIE
is preserved in SPIE when a supervisor-level trap is taken, and the value of SIE is set to zero to provide atomicity for the
supervisor-level trap handler.

The SUM (permit Supervisor User Memory access) bit modifes the privilege with which S-mode loads and stores access
user mode memory, see SMAP and SMEP with sPMP (page 90) for more details about SUM bit .

The SRET instruction is used to return from traps in S-mode, an instruction unique to S-mode. SRET sets PC to sepc,
restores interrupt-enable setting by copying SPIE to SIE, and sets SPIE bit.

When the TEE is configured, the mstatus register mirrors the SIE and SPIE fields in bit 1 and bit 5, the same location with
sstatus as shown in mstatus register (page 69).

31 18 17 16 15 14 13 12 11 10 9

8
SD SUM | MPRV SPP

7 6 5 4 3 2 1 0

XS | FS | MPP |

Fig. 16.2: mstatus register

16.3.2.2 sie

The sie register has NO effect when interrupt handling mode is ECLIC, and return data are all zeros while reading the
register.
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16.3.2.3 stvec

The stvec register is a SXLEN read/write register the lower 32-bits formatted as shown in stvec register (page 70). It
functions in an analogous way to the mtvec register defined in M-mode.

The stvec register holds S-mode exception and interrupt configuration, consisting of exception and CLIC non-vector base
address (BASE).

31 2 1 0

BASE[31:2]

Fig. 16.3: stvec register

16.3.2.4 scounteren

The counter-enable register scounteren controls the availability of the hardware performance monitoring counters to U-
mode.

When the CY, TM or IR bit in the scounteren register is clear, attempts to read the cycle, time or instret register while
executing in U-mode will cause an illegal instruction exception. When one of these bits is set, access to the corresponding

register is permitted.

31 3 2 1 0

Reserved IR |TM | CY

Fig. 16.4: scounter register

16.3.2.5 stvt

The stvt register is a SXLEN read/write register the lower 32-bits formatted as shown in stvt register (page 70). It functions
in an analogous way to the mtvt register defined in M-mode.

31 6 5 0

BASE[31:6] 0

Fig. 16.5: stvt register

The stvt register holds the base address of ECLIC S-mode vector interrupts, and the base address is aligned at least 64-byte
boundary. In order to improve the performance and reduce the gate count, the alignment of the base address in stvt is
determined by the actual number of interrupts, which is shown in Alignment of stvt base address (page 70).

Table 16.3: Alignment of stvt base address

interrupt number alignment
0to 16 64-byte

17 to 32 128-byte
33 to 64 256-byte
65 to 128 512-byte
129 to 256 1KB

257 to 512 2KB

513 to 1024 4KB
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16.3.2.6 sscratch

The sscratch register is a SXLEN read/write register dedicated for use by supervisor mode. Typically, it is used to hold a
pointer to a user mode hart-local context space and swapped with a supervisor register upon entry to a S-mode trap handler.

31 0

USCRATCH

Fig. 16.6: sscratch register

16.3.2.7 sepc
The sepc register is a SXLEN read/write register the lower 32-bits formatted as shown in sepc register (page 71). It
functions in an analogous way to the mepc register defined in M-mode.

When an exception or interrupt is taken into S-mode, sepc is written with the virtual address of the instruction that en-
countered the exception or interrupt. Otherwise, sepc is never written by the implementation, though it may be explicitly
written by software.

31 1 0

EPC 0

Fig. 16.7: sepc register

16.3.2.8 scause

The scause register is a SXLEN read/write register the lower 32-bits formatted as shown in scause register (page 71). It
functions in an analogous way to the mcause register defined in M-mode.

31 30 29 28 27 26 24 23 16 15 10 9 0

INT SINHV | Reservrd SPP SPIE Reservrd SPIL Reservrd EXCCODE

Fig. 16.8: scause register

Table 16.4: scause register description

Field Name Bit Description

INT 31 The bit is set if the trap was caused by an interrupt.

SINHV 30 The bit indicates that the interrupt is reading the interrupt vector table.

Reserved 29 0

SPP 28 The bit indicates privilege mode before S-mode exception or interrupt
is taken. It mirrors sstatus.spp

SPIE 27 The bit holds the SIE value before S-mode exception or interrupt is
taken. It mirrors sstatus.spie

Reserved 26:24 0

SPIL 23:16 The bits hold the interrupt level before S-mode interrupt is taken.

Reserved 15:10 0

EXCCODE 9:0 The bits hold the code of last exception or interrupt
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16.3.2.9 stval

The stval register is a SXLEN read/write register the lower 32-bits formatted as shown in stval register (page 72). When
a trap is taken into S-mode, stval is written with exception-specific information to assist software in handling the trap.
Otherwise, stval is never written by the implementation, though it may be explicitly written by software.

When a hardware breakpoint is triggered, or an instruction-fetch, load, or store address-misaligned, access exception
occurs, stval is written with the faulting effective address.

On an illegal instruction trap, stval is written with the faulting instruction code.

31 0

UTVAL

Fig. 16.9: stval register

16.3.2.10 sip

The sip register has NO effect when interrupt handling mode is ECLIC, and return data are all zeros while reading the
register.

16.3.2.11 snxti

The snxti register is a SXLEN read/write register the lower 32-bits formatted as shown in snxti register (page 72). It
functions in an analogous way to the mnxti register defined in M-mode.

The snxti CSR can be used by software to service the next S-mode horizontal or lower level interrupt when it has a higher
level than the saved interrupt context (held in scause.spil), without incurring the full cost of an interrupt pipeline flush and
context save/restore.

Note: If the next interrupt is an M-mode one while the execution privilege mode is S-mode, the processor will take the
next interrupt directly in a nested way. In other hand, if the processor is running in M-mode, then a S-mode interrupt will
not be taken.

The snxti CSR is designed to be accessed using CSRRSI/CSRRCI instructions, where the value read is a pointer to an
entry in the S-mode interrupt handler table and the write back updates the S-mode interrupt-enable status.

31 0

SNXYI

Fig. 16.10: snxti register

16.3.2.12 sintstatus

The sintstatus register is a SXLEN read/write register the lower 32-bits formatted as shown in sintstatus register (page 72).
It functions in an analogous way to the mintstatus register defined in M-mode.

The sintstatus register holds the active interrupt level for S-mode. The SIL field is read-only.

31 16 15 8 7 0

Reserved SIL Reserved

Fig. 16.11: sintstatus register

When the TEE is configured, the mintstatus register mirrors the SIL field in bit 8-15, the same location with sintstatus as
shown in mintstatus register (page 73).
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31 24 23 16 15 8 7 0

MIL Reserved SIL Reserved

Fig. 16.12: mintstatus register

16.3.2.13 sscratchcsw

The sscratchcsw register is a SXLEN read/write register the lower 32-bits formatted as shown in sscratchcsw register
(page 73). It functions in an analogous way to the mscratchcsw register defined in M-mode.

31 0

SSCRATCHCSW

Fig. 16.13: sscratchcsw register

To accelerate interrupt handling with multiple privilege modes, sscratchcsw is defined for supervisor mode to support
conditional swapping of the sscratch register when transitioning between supervisor mode and user mode.

csrrw rd, sscratchcsw, rsl

// Pseudocode operation.
if (scause.spp != S-mode) then {

t = rsl; rd = sscratch; sscratch = t;
} else {

rd = rsl; // sscratch unchanged.

// Usual use: csrrw sp, sscratchcswl, sp

16.3.2.14 sscratchcswli

The sscratcheswl register is a SXLEN read/write register the lower 32-bits formatted as shown in sscratcheswl register
(page 73). It functions in an analogous way to the mscratchcswl register defined in M-mode.

31 0

SSCRATCHCSWL

Fig. 16.14: sscratchcswl register

Within U-mode, sscratchcswl is useful to separate interrupt handler tasks from application tasks to enhance robustness,
reduce space usage, and aid in system debugging. Interrupt handler tasks only have non-zero interrupt levels, while appli-
cation tasks have an interrupt level of zero.

The sscratchcswl CSR is added to support faster swapping of the stack pointer between S-mode interrupt and non-interrupt
code running in the same privilege mode.

csrrw rd, sscratchcswl, rsil

// Pseudocode operation.

(continues on next page)
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(continued from previous page)

if ( (scause.spil==0) != (sintstatus.sil==0) ) then {

t = rsl; rd = sscratch; sscratch = t;

} else {

rd = rsl; // sscratch unchanged.

}

// Usual use: csrrw sp, sscratchcswl, sp

16.3.2.15 satp

The satp CSR provides the Supervisor Address Translation and Protection.

16.3.2.16 medeleg

The medeleg register is a SXLEN read/write register the lower 32-bits formatted as shown in Medeleg register (page 74).
To increase performance, the medeleg register contains individual read/write bits to indicate that certain exceptions should

be processed directly by a lower privilege level.

By default, all exceptions at any privilege level are handled in machine mode. When N-Extension is configured, setting a
bit in medeleg will delegate the corresponding exception in S/U-mode to the S-mode exception handler.

31

16 15 14 13 12 11 9 8 7 6 5 4 3 2 1 0

Reserved

[ L [ P [ [T

Fig. 16.15: Medeleg register

Table 16.5: Medeleg register description

Field Name Bits Description
Reserved SXLEN-1:16 0
15 Delegate Store/AMO Page Fault Exception
Reserved 14 0
13 Delegate Load Page Fault Exception
12 Delegate Instruction Page Fault Exception
11 Not used, tie to 0
Reserved 10 0
9 Not used, tie to 0
8 Delegate Environment Call from U-Mode
7 Delegate Store/AMO Access Fault Exception
6 Delegate Store/AMO Address Misaligned Exception
5 Delegate Load Access Fault Exception
4 Delegate Load Access Misaligned Exception
3 Delegate Breakpoint Exception
2 Delegate Illegal Instruction Exception
1 Delegate Instruction Access Fault Exception
0 Delegate Instruction Access Misaligned Exception

16.3. TEE Related CSRs

74




Nuclei® RISC-V Instruction Set Architecture Specification

16.3.2.17 mideleg

The mideleg register has NO effect when interrupt handing mode is ECLIC, and return data are all zeros while reading the
register.

16.3.3 Nuclei Customized CSR For TEE

16.3.3.1 S-mode PMP CSRs

The spmpcfg<x> and spmpaddr<x> are detailed described in Section Smpu CSRs Introdution (page 87).

16.3.3.2 S-mode Interrupt/Exception and ECLIC CSRs

16.3.3.2.1 jalsnxti

The jalsnxti register is a SXLEN read/write register the lower 32-bits formatted as shown in jalsnxti register (page 75). It
functions in an analogous way to the jalmnxti register defined in M-mode.

The jalsnxti register is designed to speed up the S-mode interrupt handling comparing to using snxti. In addition to
enabling the interrupt, accessing this CSR by ‘csrrw ra, jalsnxti, ra’ will directly jump to the next S-mode horizontal or
lower level interrupt entry address for the same privilege mode, at the same time, save the return address which is the pc of
the executing instruction, to the ra register. For more details please refer to Supervisor-Level Non-vector Mode (page 84).

31 0

JALSNXTI

Fig. 16.16: jalsnxti register

16.3.3.2.2 stvt2

The stv2 register is a SXLEN read/write register the lower 32-bits formatted as shown in stv2 register (page 75). It
functions in an analogous way to the mv2 register defined in M-mode.

The stvt2 register holds S-mode ECLIC configuration, consisting of ECLIC non-vector base address(BASE) and ECLIC
enable(STVT2EN). The ECLIC non-vector base address is aligned on a 4-byte boundary

31 2 1 0

. STVT
BASE[31:2] JEN

Fig. 16.17: stvt2 register

Table 16.6: stvt2 register description

Field Name Bits Description

BASE SXLEN-1:2 The base address of ECLIC non-vector interrupt in S-mode

Reserved 1 0

STVT2EN 0 Setting this bit will enable ECLIC mode,that means non-vector inter-
rupt base address in S-mode is specified by stvt2 instead of stvec
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16.3.3.2.3 sdcause

Since there might be some exceptions share the same scause. EXCCODE value. To further record the differences, Nuclei
processor core customized CSR sdcause register to record the detailed information about the exception.

Table 16.7: sdcause register description

Field Bit Description
Reserved SXLEN-1:2 Reserved 0
sdcause 2:0 Further record the detailed information about the exception.

When scause. EXCCODE = 1 (Instruction access fault)
* 0: Reserved
* 1: PMP permission violation
e 2: Bus error
* 3-7: Reserved
When scause. EXCCODE = 5 (Load access fault)
* 0: Reserved
¢ 1: PMP permission violation
e 2: Bus error
* 3: NICE extended long pipeline instruction return error. Note:
although this error ideally is nothing to do with the Load access
fault,
but they just shared the same scause. EXCCODE to simplify the
hardware implementation
e 4-7: Reserved
When scause. EXCCODE = 7 (Store/AMO access fault)
* 0: Reserved
¢ 1: PMP permission violation
e 2: Bus error
* 3-7: Reserved
When scause. EXCCODE = 12 (Instruction page fault)
* 0-4: Reserved
* 5: Page fault
¢ 6: SPMP permission violation
* 7: Reserved
When scause. EXCCODE = 13 (Load page fault)
e 0-4: Reserved
* 5: Page fault
e 6: SPMP permission violation
* 7: Reserved
When scause. EXCCODE = 15 (Store/AMO page fault)
e 0-4: Reserved
* 5: Page fault
e 6: SPMP permission violation
* 7: Reserved

16.3.3.2.4 pushscause

The pushscause register is a SXLEN read/write register the lower 32-bits formatted as shown in pushscause register
(page 76). It functions in an analogous way to the pushmcause register defined in M-mode.

31 0

PUSHSCAUSE

Fig. 16.18: pushscause register

The pushscause register is a function CSR and it can’t be read or written as a normal CSR. Any CSR instruction except
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for csrrwi accessing this register will raise an illegal instruction exception.

The pushscause register is designed to speed up the context saving of S-mode interrupt. Using csrrwi instruction, the data
of scause will be pushed to memory address = sp + imm*4.

csrrwi x0, pushscause ,2 // push scause to memory address = sp + 8

16.3.3.2.5 pushsepc

The pushsepc register is a SXLEN read/write register the lower 32-bits formatted as shown in pushsepc register (page 77).
It functions in an analogous way to the pushmepc register defined in M-mode.

31 0

PUSHSEPC

Fig. 16.19: pushsepc register

The pushsepc register is a function CSR and it can’t be read or written as a normal CSR. Any CSR instruction except for
csrrwi accessing this register will raise an illegal instruction exception.

The pushsepc register is designed to speed up the context saving of S-mode interrupt. Using csrrwi instruction, the data
of sepc will be pushed to memory address = sp + imm*4.

csrrwi x0, pushsepc ,2 // push sepc to memory address = sp + 8

16.4 TEE Interrupt Operation

This chapter describes the behavior of TEE interrupts, especially for supervisor-level interrupts. A supervisor-level inter-
rupt is taken only when the current mode is supervisor mode and the sstatus.SIE field is set or when the current mode is
user mode. Several main changes in the TEE will be mentioned in the following sections.

16.4.1 ECLIC Memory Map

The ECLIC memory map has been changed to support the TEE. The ECLIC memory map can support up to 1,024 total
interrupt inputs, and an M-mode ECLIC Region and a S-mode ECLIC Region. ECLIC Modified Memory Map (page 77)
describes the detailed memory map scheme.

Table 16.8: ECLIC Modified Memory Map

Offset R/W Name Width(bits) | Description
0x0000 RW cliccfg 8 -
0x0004 R clicinfo 32 -
0x0008 RW mintthresh 32 -
0x1000+4*i RW clicintip[i] 8 M-mode ECLIC Region
0x1001+4%*i RW clicintie[i] 8
0x1002+4*i RW clicintattr][i] 8
0x1003+4*i RW clicintctl[i]
0x2008 RW sintthresh 32 -
0x3000+4*i RW clicintip[i] 8 S-mode ECLIC Region
0x3001+4*i RW clicintie[i] 8
0x3002+4*i RW clicintattr[i] 8
0x3003+4*i RW clicintctl[i] 8
Note:
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* The above “i”” indicates the interrupt ID, an interrupt i has its own corresponding clicintip[i], clicintie[i], clicintattr[i],
and clicintctl[i] registers.

* Aligned byte, half-word, and word accesses to ECLIC registers are supported.
* The above “R” means read-only, and any write to this read-only register will be ignored without bus error.

* If an input 7 is not present in the hardware, the corresponding clicintip[i], clicintie[i], clicintctl[i] memory locations
appear hardwired to zero.

16.4.1.1 M-mode ECLIC Region

This region is designed to support M-mode access. If an input i is not present in the hardware, the corresponding clicin-
tip[i], clicintie[i], clicintctl[i] memory locations appear hardwired to zero.

16.4.1.2 S-mode ECLIC Region

Supervisor-mode ECLIC regions only expose interrupts that have been configured to be supervisor-accessible via the M-
mode CLIC region. System software must configure PMP and sPMP permissions to make sure this region can only be
accessed from appropriate Supervisor-mode codes.

Any interrupt i that is not accessible to S-mode appears as hard-wired zeros in clicintip[i], clicintie[i], and clicintctl[i].

If clicintattr [i] is set to S-mode (bit 7 is clear, and bit 6 is set), then interrupt i is visible in the S-mode region except that
only the low 6 bits of clicintattr [i] can be written via the S-mode memory region.

16.4.2 ECLIC Modified Memory Mapped Registers

Following only describes the ECLIC modified memory mapped registers.

16.4.2.1 cliccfg

This cliccfg register is a global configuration register. cliccfg bit assignments (page 78) describes the bit assignments of
this register.

Table 16.9: cliccfg bit assignments

Field Bits R/W Reset Description
Value
Reserved 7 R N/A Reserved, ties to 0.
nmbits 6:5 R N/A nmbits ties to 1, indicates supervisor-level inter-
rupt supporting.
nlbits 4:1 RW 0 nlbits specifies interrupt level and priority.
Reserved 0 R N/A Reserved, ties to 1.

16.4.2.2 mintthresh

The mintthresh register holds the current threshold level for each privilege mode (i.e., mth, sth). mintthresh bit assignments
(page 78) describes the bit assignments of this register.

Table 16.10: mintthresh bit assignments

Field Bits R/W Reset Description
Value
mth 31:24 RW 0 Interrupt-level threshold for M-mode.
Reserved 23:16 R N/A Reserved, ties to 0.
sth 15:8 RW 0 Interrupt-level threshold for S-mode.

continues on next page
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Table 16.10 — continued from previous page

Field Bits R/W Reset Description
Value
Reserved 7:0 R N/A Reserved, ties to 0.

16.4.2.3 sintthresh

The sintthresh register holds the current threshold level for Supervisor mode. sintthresh bit assignments (page 79) describes
the bit assignments of this register.

Table 16.11: sintthresh bit assignments

Field Bits R/W Reset Description
Value
Reserved 31:24 R N/A Reserved, ties to 0.
Reserved 23:16 R N/A Reserved, ties to 0.
sth 15:8 RwW 0 Interrupt-level threshold for S-mode.
Reserved 7:0 R N/A Reserved, ties to 0.

Note: here sth is a mirror to mintthresh.sth and will be updated synchronously.

16.4.2.4 clicintattr[i]

This register specifies various attributes for each interrupt. clicintattr[i] bit assignments (page 79) describes the bit as-
signments of this register.

Table 16.12: clicintattr[i] bit assignments

Field Bits R/W Reset Description
Value
mode 7:6 M-mode: RW 3 Specifies in which privilege mode the interrupt
S-mode: R should be taken:

3: Machine Mode

1: Supervisor Mode

Note: M-mode can Read/Write this field, but S-
mode can only Read this field. So ECLIC with
TEE does not reply on CSR mideleg to delegate
interrupts. It can only write 1 or 3 to this field,
other values are ignored.

Reserved 5:3 R N/A Reserved, ties to 0.

trig 2:1 RW 0 Specifies the trigger type and edge polarity for
each interrupt input.

shv 0 RW 0 Specifies hardware vectoring or non-vectoring
mode.

16.4.3 ECLIC Interrupt Arbitration

As mentioned above, the clicintattr[i].mode field is implemented to specify in which privilege mode the interrupt should
be taken. In order to support the TEE, the arbitration logic needs to take the clicintattr[i].mode into the consideration.
Hence, the winner of the arbitration is determined by interrupts’ mode, level and priority. In the modified arbitration
logic, privilege mode priors to level and priority, and level priors to priority. Modified arbitration scheme (page 80) shows
the modified arbitration scheme. For each interrupt i, its privilege mode, level and priority are combined to represent an
unsigned integer number. The interrupt that has the greatest number wins the arbitration.
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Interrupt1 Signals Interrupt2 Signals

Interrupt Request Interrupt Request

____________________________________________________________________________________________________________

{Mode,Level,Priority }

.H

threshold

0 Max Mode

Max Level

Fig. 16.20: Modified arbitration scheme

16.4.4 Supervisor-Level Interrupt Flow

This section describes the overall behavior when a supervisor-level interrupt is taken.

16.4.4.1 Enter a Supervisor-Level Interrupt Handler

If a supervisor-level interrupt wins the arbitration and is taken (it can only happen in supervisor/user mode), the following
listed hardware behaviors will happen at the same time:

L]

Stop executing the current program, and jump to a new PC, then execute.
Update the following listed CSRs at the same time:

sepc

sstatus

scause

sintstatus

The privilege mode changes to supervisor mode.

General flow of entering a supervisor-level interrupt handler (page 81) shows the general flow of entering a
supervisor-level interrupt handler.
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If it is a vectored interrupt, jump
directly to the address stored in
the user vector table entry

Supervisor-level
interrupt
taken

Jump to a new PC address to excute

» Update CSRs

If it is a non-vectored interrupt,
jump directly to the common
user interrupt entry

spec

sstatus

scause

sintstatus

Privilege mode changes to supervisor mode

Fig. 16.21: General flow of entering a supervisor-level interrupt handler

16.4.4.1.1 Jump to a New PC To Execute

Each interrupt can be configured to vectored or non-vectored (through clicintattr[i].shv).

« If the interrput is vectored, the core will jump directly to the address stored in the supervisor vector table entry,

which is specified by stvt.

* If the interrput is non-vectored, the core will jump directly to the common supervisor interrupt entry, which is

specified by stvt2.

16.4.4.1.2 Update CSR sepc

When a supervisor-level interrupt is taken, the sepc will be updated to the interrupted PC. In this way, once returning from
this supervisor-level interrupt handler, the core can restore the PC from spec.

16.4.4.1.3 Update CSR scause

The scause will be updated as follows:

* The scause. EXCCODE field will be updated to indicate the current interrupt ID.

* The scause.SPIL field will be updated to indicate the interrupted interrupt level(ie, sintstatus.SIL). In this way, once
returning from supervisor-level interrupt handler, sintstatus.SIL can restore is interrupted value from scause.SPIL.

* If the interrupt is vectored, the scause.SINHV field will be updated to indicate its hardware vectoring state.

16.4. TEE Interrupt Operation
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16.4.4.1.4 Update CSR sstatus

The sstatus will be updated as follows:

* The sstatus.SPIE field will be updated to the value of sstatus.SIE field, while sstatus.SIE field will be updated to
Zero.

¢ Note: The scause.SPIE field mirrors the sstatus.SPIE field, and is aliased into scause to reduce context save/restore
code.

16.4.4.1.5 Update CSR sintstatus

The sintstatus will be updated as follows:

* The sintstatus.SIL field will be updated to hold the active interrupt level.

16.4.4.1.6 Privilege Mode Changed to Supervisor Mode

A supervisor-level interrupt can be taken from supervisor/user mode, after being taken the privilege mode will change to
supervisor mode.

16.4.4.2 Return from a Supervisor-Level Interrupt Handler
The regular sret instruction is used to return from a supervisor-level interrupt handler. After the execution of sret, the
following listed hardware behaviors will happen at the same time.
* Stop executing the current program, and jump to a new PC stored in sepc to execute.
» Update the following listed CSRs at the same time:
sstatus
scause
sintstatus
» The privilege mode changes to the previous interrupted mode.

* General flow of returning from an supervisor-level interrupt handler (page 83) shows the general procedure.
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Y

Jump to a new PC address(stored in sepc) to execute

Supervisor-level
interrupt handler >
exitting

Update CSRs

Y

Y

sstatus

Y

Scause

sintstatus

A 4

Privilege mode changes to the previous interrupted mode

Fig. 16.22: General flow of returning from an supervisor-level interrupt handler

16.4.4.2.1 Jump to a New PC To Execute

The core will jump to a new address stored in spec to execute, after executing the sret instruction to return from a supervisor-

level interrupt handler.

16.4.4.2.2 Update CSR sstatus

After the execution of sret, the CSR sstatus will be updated as follows.

e The sstatus.SIE field will be updated to the value of sstatus.SPIE field.

¢ The sstatus.SPIE field will be set to 1.

16.4. TEE Interrupt Operation

83



Nuclei® RISC-V Instruction Set Architecture Specification

16.4.4.2.3 Update CSR scause

After the execution of sret, the CSR scause will be updated as follows.

¢ Note: The scause.SPIE field mirrors the sstatus.SPIE field, and is aliased into scause to reduce context save/restore

code.

16.4.4.2.4 Update CSR sintstatus

After the execution of sret, the CSR sintstatus will be updated as follows.

 The sintstatus.SIL field will be updated to the value of the scause.SPIL filed.

16.4.4.2.5 Privilege Mode changed to the Previous Privilege Mode

The privilege mode will be changed to the previous privilege mode (which is stored in sstatus.SPP) when returning from

this interrupt handler.

16.4.4.3 Supervisor-Level Non-vector Mode

Supervisor-Level non-vector mode interrupt flow is the same as machine-level non-vector mode flow, except:
* The CSRs that should be saved and restored during interrupt processing are different.
During supervisor-level interrupt processing, sepc and scause should be saved and restored.
* The instruction used for tail-chaining is different.

For supervisor-level non-vector mode, the instruction “csrrw ra, jalsnxti, ra” is used to realize supervisor-level
interrupt tail-chaining.

16.4.4.4 Supervisor-Level Vector Mode

Supervisor-Level vector mode interrupt flow is the same as machine-level vector mode flow, except:
* The CSRs that should be saved and restored during interrupt processing are different.
During supervisor-level interrupt processing, sepc and scause should be saved and restored.
* The “interrupt attribute” for C is different.

For a supervisor-level vector mode handler, the “interrupt attribute” for C has the following syntax:

void __attribute__ (interrupt('supervisor")) foo (void)
{
extern volatile int INTERRUPT_FLAG;
INTERRUPT_FLAG = O;
extern volatile int COUNTER;
#ifdef __riscv_atomic
__atomic_fetch_add (&COUNTER, 1, __ATOMIC_RELAXED);
#else

COUNTER++;

(continues on next page)
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(continued from previous page)

#endif

16.4.5 Nesting between Privilege Modes

A machine-level interrupt can pre-empt a supervisor-level interrupt which has already been taken in supervisor mode, while
a supervisor-level interrupt can never pre-empt a machine-level interrupt. Besides, a supervisor-level interrupt occurring
in machine mode can not be taken.

16.5 TEE Exception Operation

This chapter describes the behavior of TEE exception, especially for S-mode exception. The S-mode exception is taken
only when the current mode is supervisor mode and the corresponding bit in medeleg is set or the current mode is user
mode. On the other hand, the medeleg register will be ignored when the processor is in machine mode, which means any
exception happens in machine mode will never be delegated.

16.5.1 TEE Exception Mask

For a processor that supports the TEE, unlike interrupts, exceptions can’t be masked in any privilege mode at any time.
Once there is an exception, the processor will take it in either machine or supervisor mode.

16.5.2 TEE Exception Priority

The priority of exceptions in one privilege mode is defined by exception code, that is, the exception with smaller code has
a higher priority. If a S-mode exception and an M-mode exception occur at the same time in supervisor mode, the M-mode
exception has a higher priority.

16.5.3 S-mode Exception Taken

When entering a S-mode exception, the hardware behavior can be briefly described as follows.
* The PC is changed to the address defined in the stvec.
* scause is updated to reflect the type of exception.
* sepc is updated to save the PC address where the exception happens.
* stval is updated to record the memory access address or instruction code.

e sstatus.sie is copied to sstatus.spie and sstatus.sie is cleared.

16.5.4 S-mode Exception Return

When returning from a S-mode exception trap handler, the hardware behavior can be briefly described as follows.
* The PC is restored from the address in sepc.

* sstatus.sie is copied to sstatus.sipe and spie is set.
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16.5.5 S-mode Exception Nesting

Nuclei TEE does not support S-mode exception nesting with another S-mode exception. The behavior is unpredictable.

However, M-mode exception or NMI taken in S-mode exception is controllable, as the S-mode trap CSRs won’t be updated.

16.6 TEE Low-Power Mechanism

16.6.1 TEE WFI Mechanism
There are some changes for WFI mechanism in the TEE. Due to the addition of S-mode interrupt, WFI can be divided into
U-mode WFI, S-mode WFI and M-mode WFI.

U-mode WFI means that the processor executes wfi instruction in User Mode, then the processor enters the User-Level
Low-Power Mode.

» The processor will be waked up if a S-mode interrupt wins the interrupt arbitration, and the processor will be trapped
to the corresponding handler no matter sstatus.sie is set or not.

* The processor will be waked up if an M-mode interrupt wins the interrupt arbitration, and the processor will be
trapped to the corresponding handler no matter mstazus.mie is set or not.

S-mode WFI means that the processor executes wfi instruction in Supervisor Mode, then the processor enters the
Supervisor-Level Low-Power Mode.

* The processor will be waked up if a S-mode interrupt wins the interrupt arbitration, and whether the processor will
resume execution or be trapped to the interrupt handler depends on sstatus.sie.

* The processor will be waked up if an M-mode interrupt wins the interrupt arbitration, and the processor will be
trapped to the corresponding handler no matter mstatus.mie is set or not.

M-mode WFI means that the processor executes wfi instruction in Machine Mode, then the processor enters the Machine-
Level Low-Power Mode.

* Any S-mode interrupts cannot win the interrupt arbitration when the processor stays in the Machine-Level Low-
Power mode, so the processor will still stay in Low-Power mode when it encounters a S-mode interrupt.

* The processor will be waked up if an M-mode interrupt wins the interrupt arbitration, and whether the processor
will resume execution or be trapped to the interrupt handler depends on mstatus.mie.

In addition, NMI and debug request can also wake up U-mode WFI, S-mode WFI and M-mode WFI.

16.6.2 TEE WFE Mechanism

The WFE mechanism for a core with the TEE remains unchanged. No matter what the privilege mode is, setting wfe and
executing the wfi instruction will take the processor to Low-Power mode. The processor could be waked up by event, NMI,
and debug request.

16.7 TEE Physical Memory Protection Mechanism

In addition to PMP, Smpu (sPMP is the earlier spec) mechanism is implemented to achieve better isolation in TEE.
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16.7.1 TEE PMP Mechanism

The PMP mechanism in TEE remains unchanged.

16.7.2 TEE Smpu Mechanism

The Smpu mechanism provides supervisor-mode control CSRs to allow physical memory access privileges (read, write,
execute) to be specified for each physical memory region. The Smpu values are checked after the physical address to be
accessed pass PMP checks described in the RISC-V privileged spec.

Smpu checks are applied to all accesses when the hart is running in U-mode, and for load/store when the MPRV bit is
set in the mstatus CSR and the MPP field in the mstatus CSR contains U-mode. Optionally, Smpu checks can also apply
to S-mode accesses, in which case the Smpu values are locked to S-mode software, so that S-mode cannot change their
values. Unlike PMP registers, Smpu registers can always be modified by M-mode software even when they are locked.
Smpu registers can grant permissions to U-mode, which has none by default, and revoke permissions from S-mode, which
has full permissions by default.

16.7.2.1 Smpu CSRs Introdution

16.7.2.1.1 Smpu CSRs List

Following Smpu CSRs (page 87) lists the Smpu CSRs. Like PMP, Smpu entries are described by an 8-bit configuration
region and one SXLEN-bit address CSR. Some Smpu settings additionally use the address register associated with the
preceding Smpu entry. The number of Smpu entries can vary by implementation, and up to 16 Smpu entries is supported.

Table 16.13: Smpu CSRs

Number Privilege Name Description
0x170 SRW smpuswitchO Supervisor context switch register
0x171 SRW smpuswitch1 Supervisor context switch register
(RV32 ONLY)
0x1A0 SRW spmpcfg0 Supervisor physical memory protection configuration
Ox1A1 SRW spmpcfgl Supervisor physical memory protection configuration
(RV32 ONLY)
0x1A2 SRW spmpcfg2 Supervisor physical memory protection configuration
Ox1A3 SRW spmpcfg3 Supervisor physical memory protection configuration
(RV32 ONLY)
0x1BO SRW spmpaddrO Supervisor physical memory protection address register
0x1B1 SRW spmpaddrl Supervisor physical memory protection address register
. SRW . e
(0x1BO+n) | SRW spmpaddrn Supervisor physical memory protection address register

16.7.2.1.2 spmpcfg<x>

The sPMP configuration registers are packed into CSRs in the same way as PMP does. For RV32, four CSRs, spm-
pcfg0~spmpcfg3, hold the configurations spmpOcfg~spmp15cfg for the 16 PMP entries, as shown in RV32 spmpcfg<x>
layout (page 88). For RV64, spmpcfg0 and spmpcfg2 hold the configurations for the 16 PMP entries, as shown in RV64
spmpcfg<x> layout (page 88); spmpcfgl and spmpcfg3 are illegal.
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31 24 23 16 15 8 7 0

’ spmp3cfg l spmp2cfg l spmplcfg l spmpOcfg ‘ spmpcfg0
8 8 8 8

31 24 23 16 15 8 7 0

’ spmp7cfg l spmp6cfg l spmp5cfg l spmp4cfg ‘ spmpcfgl
8 8 8 8

31 24 23 16 15 8 7 0

’ spmpllcfg l spmp10cfg l spmp9cfg l spmp8cfg ‘ spmpcfg2
8 8 8 8

31 24 23 16 15 8 7 0

’ spmp15cfg l spmpldcfg l spmp13cfg l spmp12cfg ‘ spmpcfg3
8 8 8 8

Fig. 16.23: RV32 spmpcfg<x> layout

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

’ spmp7cfg l spmp6cfg l spmp5cfg l spmp4cfg I spmp3cfg l spmp2cfg l spmplcfg l spmpOcfg ‘ spmpcfg0
8 8 8 8 8 8 8 8

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

’ spmp15cfg l spmpldcfg l spmp13cfg l spmpl2cfg I spmpllcfg l spmp10cfg l spmp9cfg l spmp8cfg ‘ spmpcfg2
8 8 8 8 8 8 8 8

Fig. 16.24: RV64 spmpcfg<x> layout

The format of sSPMP configuration registers is the same as PMP configuration registers, as is shown in spmp<x>cfg format
(page 88).

The R, W, and X bits, when set, indicate that the sSPMP entry permits read, write and instruction execution, respectively.
When one of these bits is clear, the corresponding access type is denied.

The U bit represents that the SPMP entry is for user mode, and will be used to enforce SMAP and SMEP (described in
SMAP and SMEP with sPMP (page 90)).

The A bits encodes the address-matching mode of the associated sSPMP entry. The encoding of A field is the same as
PMP’s.

The remaining L field will be described in the following sPMP Locking and Privilege Mode (page 89).

Table 16.14: spmp<x>cfg format

Field Bits Reset Value | Description

L 7 0 Indicates the sSPMP entry is locked.

U 6 0 Indicates the sSPMP entry is for user mode.
Reserved 5 N/A Reserved, ties to 0.

A 4:3 0 Encodes the sSPMP entry’s address-matching mode.
X 2 0 Indicates the SPMP entry permits execution.

w 1 0 Indicates the sSPMP entry permits write.

R 0 0 Indicates the SPMP entry permits read.
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16.7.2.1.3 spmpaddr<x>

The sPMP address registers are CSRs named spmpaddrO-spmpaddr15. Each SPMP address register encodes bits 33-2 of
34-bit physical address for RV32, as shown in RV32 spmpaddr<x> format (page 89). For RV64, each SPMP address bits
may be implemented, and so the spmpaddr registers are WARL.

31 0

address[33:2] (WARL)

32

Fig. 16.25: RV32 spmpaddr<x> format

63 54 53 0

0 (WARL) address[55:2] (WARL)

10 54

Fig. 16.26: RV64 spmpaddr<x> format

16.7.2.2 sPMP Locking and Privilege Mode

The L bit indicates that the sSPMP is locked to S-mode, i.e., S-mode writes to the configuration register and associated
address registers are ignored. Locked sPMP entries can only be unlocked by M-mode or by a system reset. If sSPMP entry
i is locked, writes to the spmp<x>cfg and pmpaddr<x> are ignored. In addition to locking the sSPMP entry, the L bit
indicates whether the R/W/X permissions are enforced on S-mode accesses. When the L bit is set, these permissions are
enforced for both user and supervisor modes (M-mode accesses are not affected). When the L bit is clear, any S-mode
access matching the sSPMP entry will succeed; the R/W/X permissions apply only to U modes.

16.7.2.3 sPMP Exception

Failed accesses generate a load, store, or instruction page fault (these exceptions should be delegated to S-mode software
when happen).

16.7.2.4 sPMP Priority and Matching Logic

The sPMP checks only take effect after the memory access passes the PMP permission checks. An M-mode access will
not be checked by sPMP property.

Like PMP entries, SPMP entries are also statically prioritized. The lowest-numbered sPMP entry that matches any byte of
an access determines whether that access succeeds or fails. The matching sSPMP entry must match all bytes of an access,
or the access fails, irrespective of the L, R, W, and X bits.

If a sSPMP entry matches all bytes of an access, then the L, R, W and X bits determine whether the access succeeds or fails.
If the privilege mode of the access is M, the access succeeds. Otherwise, if the L bit is set or the privilege mode of the
access is U, then the access succeeds only if the R, W, or X bit corresponding to the access type is set.

If no sSPMP entry matches an S-mode access (i.e., there is no such a sSPMP entry whose L bit is set and region contains the
memory access), the access succeeds, otherwise the access is checked according to the permission bits in SPMP entry. If
no sPMP entry matches an U-mode access, but at least one sSPMP entry is implemented, the access fails.
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16.7.2.5 SMAP and SMEP with sPMP
For SMAP, the SUM (permit Supervisor User Memory access) bit in the status register is leveraged to indicate the privilege
with which S-mode loads, stores, and instruction fetches access physical memory.

* When SUM=0, S-Mode physical memory accesses to memory that are accessible by

U-Mode (U=1 in RV32 spmpcfg<x> layout (page 88)) will fault.

* When SUM=1, these accesses are permitted.
The SUM can take effect even when page-based virtual memory is not in effect.
For SMEP, it is not allowed for S-mode to execute codes in physical memory that are for

U-mode (U=1 in RV32 spmpcfg<x> layout (page 88)).

16.8 TEE Configuration

<xxx>_CFG_HAS_TEE is a global option to configure the implementation of TEE.
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MMU Introduction

17.1 MMU Overview

Nuclei processor U/UX class core can have MMU (Memory Management Unit) configured for Linux capable applications,
which implements the address translation defined in RISC-V privileged specification, to support Page-Based Virtual-
Memory System, which can be used for converting Virtual-Address to Physical-Address and corresponding Permission
Checking. MMU is part of RISC-V standard privileged architecture specification.

17.2 Support features

MMU support below official features.
e Sv32
e Sv39
e Sv48
* Svvptc Extension v1.0
* Svpbmt Extension v1.0

* Svnapot Extension v1.0

17.3 MMU Specific Features to Nuclei Core

In order to simplify the hardware implementation, Nuclei processor core have some MMU specific features, which are
detailed described at next sections.

17.3.1 TLB

MMU has two level TLB (Translation Lookaside Buffer) implemented to cache the page tables for fast subsequent access-
ing:

e MTLB: main/joint TLB for both instruction and data page table
e I/D-TLB: I/D-TLB is dedicate for instruction/data page table, each has 8/16 entries
I/D-TLB will be accessed first, if miss then MTLB will be accessed.

MMU supports 4KB, 2MB, 1GB(Sv39) and 512GB(Sv48) page types, which uses Hardware Page Table Walk mechanism
to fetch page tables from memory when TLB miss without software handling.

To increase the timing, PMA and PMP information are saved into I/D-TLB. So if software change:
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e The PMA information: Modify PMA CSR

mattri(n)
mppicfg_info
ilm_ctl
dlm_ctl
mcache_ctl
mseccfg

mmacro_ca_en/mmacro_dev_en/mmacro_noc_en

* PMP information: Modify PMP CSR.

Hardware will auto clear the I/D-TLB information.

Warning: If software change the PMP for page-self memory region, Software should execute “sfence.vma x0, x0” to
clear the all TLB information.

17.3.2 ASID

TLB Support ASID, and ASID width is 16.

17.3.3 ECC

MTLB Support ECC, and ECC feature use CSR(mtlbcfg_ctl) to enable or disable.

17.3.4 NAPOT

MMU Support NAPOT, but for performance, hardware add one software switch to enable it.

If NAPOT bit in mtlb_ctl is 0, hardware disable the napot translation. If 63 bit in page table entry is 1, page fault will be

generated.

17.3.5 U32

Typically, RV64 CPU execute the instruction with the whole 64-bit register, and can’t execute the rv32-only instructions.
So RV32 application can’t run in RV64 CPU.

When config U32 feature, in user-mode. RV64 CPU execute the instruction:

» Use the low 32-bit register.

» Allow execute the rv32-only instructions.

* Forbid execute the rv64-only instructions.

¢ Use the SV32 to address translation.

So RV32 application can run in RV64 CPU in user-mode.

Software set the UXL bit of mstatus/sstauts CSR to control this feature.

e Write 1: U-mode working in XLEN is 32.
e Write 2: U-mode working in XLEN is 64.

U32 support isa:

eI
M

17.3. MMU Specific Features to Nuclei Core
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e Xlcz
e Zicond

e Zth

17.3.6 Consistency

MMU page data is consistency with Dcache, that mean software write page into dcache, MMU can get the new page in

dcache when page table walk.

So if software known updated page information not in MMU TLB, software no need to flush dcache data to next level, and

can access the page address immediately. MMU can get the new mapping.
For example:

» Software access 0xa000_0000, and get page fault.

» Software update the page in exception handler.

¢ Software back to access 0xa000_0000 code.

e MMU translate the 0xa000_0000, and get page from Dcache.

* MMU get new mapping PA and permissions.

17.3. MMU Specific Features to Nuclei Core
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Secure States

Nuclei CPU implement the Smwg extention, please see WorldGuard Specification (page 360) to get detail information.
CPU will have two states.

 Secure state

* Non-Secure state

Software in Machine privilege can control the CSR to set the state for S/U privilege.

Note: Machine privilege is always secure state.

Secure State

Non-Secure State

Fig. 18.1: CPU states
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18.1 CSR Support

Software use mlwid(0x390) csr to set the state for S/U privilege.

Warning: This csr only can be accessed by machine privilege.

Below is the code to set secure state and non-secure state.

set_secure:
1i a®, 1
csrs mlwid, a®
ret
set_non_secure:
1i a0, 1
csrc mlwid, a®
ret

In M-mode, after setting this bit to configure the secure state, executing mret to return to S-mode or U-mode will result in
the corresponding CPU transitioning to the specified secure state.

18.2 BUS Support

The arprot[1]/awprot[1] for axi bus, define the access is secure access or non-secure access.
¢ 0: secure access
¢ 1: non-secure access

The hprot[1] for ahbl bus, define the access is secure access or non-secure access.
¢ 0: secure access

¢ 1: non-secure access

18.3 Debug Support

Debug mode is split into secure debug mode and non-secure debug mode.
¢ Secure debug mode:
— CPU from secure state enter debug mode
— Debugger can access all sources.
* Non-secure debug mode:
— CPU from non-secure state enter debug mode
— Debugger can only access non-secure state sources.
There is a cpu input “dbg_sec_enable” to define the secure debug enable.
¢ 0: Disable secure debug
* 1: Enable secure debug

When secure debug disable, debugger send debug request to cpu, and cpu is running in secure state, cpu will ignore the
debug request until cpu enter non-secure state.

When cpu enter non-secure state, cpu will acknoledge the debug request then enter non-secure debug mode.

Note: SBA(System Bus Access) is not support when Core support secure state.
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18.4 MMU Support

Within the Instruction Translation Lookaside Buffer (ITLB), Data Translation Lookaside Buffer (DTLB), and Main Trans-
lation Lookaside Buffer (MTLB), a secure bit is maintained for every TLB entry. This bit indicates whether the entry
pertains to a secure or non-secure context.

* When the system is in a secure state, TLB entries marked as secure can be matched and accessed.
* Conversely, when operating in a non-secure state, only TLB entries flagged as non-secure are eligible for matching.

In M-mode, upon changing the security state and updating the Supervisor Address Translation Physical register (satp CSR),
there is no requirement for software to manually invalidate the TLB through an sfence instruction.

The invalidation of TLB entries occurs automatically during the context switch, based on their associated security states.
This ensures that the TLB reflects the correct security level for the current execution context without explicit intervention
from software.

Note: Secure/Non-secure bit is not exist in the page, so software should use different memory region to put secure page
and non-secure page.

And software should ensure non-secure program can’t access secure page.

When page table walk, mmu send below memory access to get page value:
* secure memory access when CPU is running in secure state.

* non-secure memory access when CPU is running in non-secure state.

18.5 Cache Support

Within the instruction cache (icache), data cache (dcache), and Level 2 (L.2) cache, a secure bit accompanies each cacheline
to denote its security states. This ensures that:

* When the processor is operating in a secure state, it can only retrieve data from cachelines that are also marked as
secure.

» Conversely, while in a non-secure state, access is limited to cachelines that have been designated as non-secure.

When executing in M-mode, the process of altering the security state and updating the Supervisor Address Translation
Physical (satp) Control and Status Register (CSR) does not necessitate a manual Cache Coherence Maintenance (CCM)
operation to clear the cache. Instead, the invalidation of cache entries is handled automatically during a context switch,
contingent upon their respective security states. This mechanism ensures that the cache contents align with the current
security context without requiring explicit cache flushing instructions from software.

18.6 Sharing data Support

A set of Memory Attribute Tag Registers (MATTRIs), known as mattribute CSRs, has been introduced to enable data
sharing mechanisms between secure and non-secure operational states.

These mattr CSRs serve the purpose of delineating specific segments within the non-secure address space. By doing so,
they permit direct access to these segments from the secure state, effectively bridging the gap and allowing for seamless
data exchange across different security contexts.

These accessible segments within the non-secure space are metaphorically termed as “skylights”, signifying a window
of opportunity for secure state entities to interact with non-secure resources without compromising the overall security
posture.

Warning: Skylights only support data sharing, not code sharing.
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In total, there are five distinct sets of mattribute CSRs designed to cater to various requirements and configurations in
managing the inter-state data sharing efficiently and securely. Each set provides granular control over attributes such as
memory type, cacheability, and access permissions, ensuring that data sharing is both flexible and secure across different

execution domains.

CSRID Attri CSR Name Description
0x7f3 MRW mattri0_base entry( base
0x7t4 MRW mattri0_mask entry0 mask
0x7f5 MRW mattril_base entryl base
0x7f6 MRW mattril _mask entryl mask
0x719 MRW mattri2_base entry2 base
Ox7fa MRW mattri2_mask entry2 mask
0x7fb MRW mattri3_base entry3 base
0Ox7fc MRW mattri3_mask entry3 mask
0x7fd MRW mattri4_base entry4 base
Ox7fe MRW mattri4_mask entry4 mask
Warning: The base address should anligned to 4K.

The base register shows below:

bit Attri Description
0 MRW

Entry Enable 0: Disable 1: Enable

If this bit is O, other bit will be ignored by hardware

1 MRW Device Attribute Enable
2 MRW Non cacheable Attribute Enable
3 MRW Share Attribute Enable
11:4 Reserved
PA_SIZE:12 MRW Base address

For example, set the 0xa000_0000 to Oxafff_ffff to share region, the code is below:

1i a0, 0xfOO000000

csrw mattri4_mask, a0
1i a®, 0xa®000000 + (1 << 3) + (1 << ®)
csrw mattri3_base, a0

In order to facilitate the setup of shared memory regions under the secure state of Supervisor Mode (S-mode), the following
Control and Status Registers (CSRs) have been added.

18.6. Sharing data Support
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CSR ID Attri CSR Name Description
0x5f0 S-SRW sattri0_base entry( base
0x5f1 S-SRW sattri0_mask entryO mask
0x5f2 S-SRW sattril_base entryl base
0x5f3 S-SRW sattril _mask entryl mask
0x5f4 S-SRW sattri2_base entry2 base
0x5f5 S-SRW sattri2_mask entry2 mask
0x5f6 S-SRW sattri3_base entry3 base
0x5f7 S-SRW sattri3_mask entry3 mask
0x5f8 S-SRW sattri4_base entry4 base
0x5f9 S-SRW sattri4_mask entry4 mask
0Ox5fa S-SRW sattriS_base entry5 base
0x5fb S-SRW sattri5_mask entry5 mask
0x5fc S-SRW sattri6_base entry6 base
0x5fd S-SRW sattri6_mask entry6 mask
Ox5fe S-SRW sattri7_base entry7 base
Ox5ff S-SRW sattri7_mask entry7 mask

Warning: These CSR only can accessed by M-mode or Secure state S-mode.

The base register shows below:

bit Attri Description
0 MRW .

Entry Enable 0: Disable 1: Enable

If this bit is 0, other bit will be ignored by hardware

1 Reserved
2 Reserved
3 MRW Share Attribute Enable
11:4 Reserved
PA_SIZE:12 MRW Base address

The configured shared regions only apply to the S and U modes, they have no effect on the M mode.

18.7 Not Support Secure State

There are some memory region not support secure state.

* ILM
* DLM

* Iregion device

— Timer

Eclic
— Plic

¢ Cluster local memory

The aforementioned regions do not differentiate between secure and non-secure states.

18.7. Not Support Secure State
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18.8 Linux Boot

In the existing RISC-V Linux boot process, OpenSBI is tasked with transferring the kernel and root filesystem data into
DDR. Both the kernel and root filesystem run in Non-Secure mode, while OpenSBI operates in Secure mode. This leads
to a situation where, post data movement by OpenSBI, the relocated data becomes unreachable when the CPU transitions
to Non-Secure mode (part of the transferred data may be located in the cache, which is differentiated between Secure and
Non-Secure states).

To resolve this issue, it is required to establish a ‘skylights’ prior to the data transfer, designating the data as shared between
Secure and Non-Secure states. Upon completion of the data movement, this skylights needs to be subsequently closed.

If the DDR address for the data relocation is 0xa000_0000, and the size of the data to be moved is 256MB, then the
relocation code should be modified as follows:

// setup skylights

1i a0, 0xfOO00000

csrw mattri3_mask, a®

1i a®, 0xa®000000 + (1 << 3) + (1 << ®)
csrw mattri3_base, a®

// move code/data

// close skylights
csrw mattri3_base, x0

Note: Regarding the Device Tree Blob (DTB) content, it also needs to be relocated to the non-secure region; otherwise,
once the ‘skylights’ is closed, the kernel will be unable to access the DTB content.
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PMA Introduction

PMA (Physical memory attribute) define the attribute of memory. PMA will affect CPU access memory behavior.
PMA are split into three attributes:

¢ Device(abbreviated as ‘DEV’) Attribute

* Non-Cacheable(abbreviated as ‘NC’) Attribute

¢ Cacheable(abbreviated as ‘CA’) Attribute
And the whole memory region are split into three regions:

* DEV Region: The PMA of this region is DEV attribute.

e NC Region: The PMA of this region is NC attribute.

* CA Region: The PMA of this region is CA attribute.

Note: Only CPU config I-Cache, the CA attribute and CA region are exist. Otherwise DEV and CA exist.

19.1 CPU Fetch

CPU can’t fetch instruction from device region. If ifu find the fetch address is DEV region, it don’t send fetch request to
soc, and generate exception immediately.

If ifu find the fetch address is NC region, it send fetch request to SOC. When get instruction, it send instruction to exu
immediately, don’t save the instruction into I-Cache.

If ifu find the fetch address is CA region, it send fetch request to SOC. When get instruction, it send instruction to exu and
save the instruction into I-Cache.

19.2 CPU Load/Store

The behavior of CPU load/store data in:

* Device Region:

The sequence of memory accesses is guaranteed to be in-order.

Not support write data merge.

Not support early response.

Load data will not refill into D-Cache.

Not Support data coherency in smp.
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* NC Region:

— The sequence of memory accesses is guaranteed to be in-order.

Support write data merge.

Support write early response.

Load data will not refill into D-Cache.

Not Support data coherency in smp.

* CA Region:

The sequence of memory accesses is not guaranteed to be in-order.

Support write data merge.

Support write early response.

Load data will refill into D-Cache.

Support data coherency in smp.

Support data prefetch.

19.3 Hardware PMA Setting

Hardware provide three group config to set the PMA.
* DEV Region config
* NC Region config
* CA Region config
Each group config have three config:
¢ REGION_NUM: specify the active region number, range is 0-8.
* REGION(n)_BASE: specify the group n base address.
* REGION(n)_MASK: specify the group n mask address.
REGION Size = ~mask + 1

For one address A, if A & REGION(n)_MASK == REGION(n)_BASE, that mean the attribute of address A belong the
region attribute.

Note: Region granule is 4KB, so the low 11-bit of MASK must be 0.

19.4 Software PMA Setting

Hardware provide some software csr to modify the pma. Please refer to mattrib(n) (page 135) and mattrim(n) (page 136)
to knwo how to set.
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19.5 Priority PMA

PMA setting can overlap, if overlap, the Priority order is as belows:
« IREGION/PPI/CPPI/FIO
» Hardware/software NC
* Hardware/software CA
* Hardware/software DEV
For example:
one address is in IREGION, the pma of the address is always device. Hardware or software can’t modify it.

one address is in hardware dev region, the PMA of the address is device attribute. Software can modify it to NC or CA
attribute.

19.6 ILM/DLM/VLM PMA

The PMA of ILM, DLM and VLM is determined by hardware pma config. But software can modify it.

Warning: For correctness, the PMA of ILM can’t set device attribute.

For efficiency, the PMA of DLM and VLM shouldn’t set device attribute.

19.7 CLM PMA

The PMA of CLM is determined by hardware PMA config. But software can modify it.

Note: For efficiency, the PMA of CLM shouldn’t set device attribute.
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WFI/WFE Low-Power Mechanism

The Nuclei processor core can support sleep mode for lower power consumption.

20.1 Enter the Sleep Mode

The Nuclei processor core can enter sleep mode by executing the WFI instruction. When the core executes the WFI
instruction, it will perform following operations:

 Stop executing the current instruction stream immediately.

» Waiting for the core to complete any outstanding transactions, such as fetching instructions, load or store operations,
to ensure that all the transactions sent to the bus are completed.

Note: If a memory access error exception occurs while waiting for a bus operation to complete, the core will enter the
exception handling mode rather than sleep mode.

* When all of the outstanding transactions are completed, the core safely enters an idle state, which is called the sleep
mode.

* When enters the sleep mode:
— The clocks of the main units inside the core will be gated off to save dynamic power consumption;
— The output signal core_wfi_mode of the core will be asserted to indicate that this core is in the sleep mode;

— The output signal core_sleep_value of the core will output the value of the CSR register sleepvalue

Note:

» This signal core_sleep_value is valid only when the core_wfi_mode is asserted; if the signal core_wfi_mode is 0,
then the value of core_sleep_value must be 0. The software can indicate different sleep modes (0 as shallow sleep
or 1 as deep sleep) by set the CSR register sleepvalue in advance.

» The Nuclei processor core behaves exactly the same for different sleep modes. These sleep modes only provide differ-
ent output value (via output signal core_sleep_value) for different controlling scheme to the Power Management Unit
(PMU) at the SoC system level. For example, if the PMU detect the core_wfi_mode is high and core_sleep_value
is low, then it can switch the core_clk_aon to a lower frequency; if the PMU detect the core_wfi_mode is high and
core_sleep_value is high, then it can turn off the core_clk_aon, and in this condition, it must restore core_clk_aon
before interrupt/event wakes core up.

* When core enters to the deep sleep mode, normally the processor core will no longer be able to be debugged, and
Nuclei Core has input signal override_dm_sleep to avoid this, please refer the signal description in related core’s
databook.
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* If the core is one in a cluster (like UX900MP), and the core’s SMP Enable Bit (SMP_ENB (page 337) ) is on, then
while the core is in Sleep Mode, it can be snooped by other clients in the cluster automatically, that means the core’s
clock will be on and handle the snoop request ,and then the clock will be off right after the request is done.

20.2 Wait for Interrupt

The Wait for Interrupt mechanism means that the core enters the sleep mode, and the core keeps on waiting for an interrupt
to wake up.

As described in Enter the Sleep Mode (page 103), the Wait for Interrupt mechanism can be implemented with following
programming flow:

1. Set the value of CSR sleepvalue to 0 or 1.
2. Set the value of CSR wfe.WFE to 0.

3. Execute the WFI instruction.

20.3 Wait for Event

The Wait for Event mechanism means that the core enters the sleep mode, and the core keeps waiting for an event to wake
up. When the core wakes up by the event, it continues to execute the instruction right after the wfi.

As mentioned in Enter the Sleep Mode (page 103), the Wait for Event mechanism can be implemented by executing the
WFI instruction combined with the following sequence of instructions:

1. Set the value of CSR sleepvalue to O or 1.
2. Set the value of CSR wfe.WFE to 1.

3. Execute the WFI instruction..

20.4 Exit the Sleep Mode

The core can exit the Sleep Mode (be woken up) by four ways:
* NMI
* Interrupt
* Event
* Debug request

Each way is described in details in next part. When core exits the Sleep Mode, the output signal core_wfi_mode of the
core is cleared to 0.

20.4.1 Wake Up by NMI

NMI can always wake up the core. When the core detects a rising edge of the input signal nmi, the core is woken up and
jumps to the NMI service routine.
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20.4.2 Wake Up by Interrupt

Interrupts can wake up the core as well:

« If the value of wfe.WFE is set to 0, the core will be waited for the interrupt to wake up. In this case, the behavior
of WFI wake up is just following the RISC-V standard architecture. This document will not repeat its content here,
please refer to RISC-V standard privileged architecture specification for more details.

* If the value of wfe. WFE is set to 1, the core will be waited for an event to wake up. Please see the detailed description
in the next section.

20.4.3 Wake Up by Event

Event can wake up the processor core when the following conditions are met:
¢ If the value of wfe. WFE is set to 1, then:

— When the core detects that the input signal rx_evt (called the event signal) is asserted, the core will be woken
up and continue to execute the previously interrupted instruction stream. Please refer to the specific databook
of the Nuclei processor core for details about the signal rx_evt.

20.4.4 Wake Up by Debug Request

Debug requests can wake up the core. If the debugger is connected, it wakes up the core and lets core enter the debug
mode.

20.4. Exit the Sleep Mode 105



Power Down Low-Power Mechanism

Last chapter introduces Nuclei processor core WFI/WFE mechanism, it uses clock off to save power consumption. Further
to save power consumption, power off the logic is an option, this chapter introduces that the programming flow of power
down Nuclei processor core.

21.1 Single Core Power Down Flow

As Nuclei N200/N300/N600/NX600/UX600 core is Single Core Configurations only, including 900 Single Core, it has
only one power domain. The programing model/flow to power down is as following:

* Core finishes the application task, mask all interrupts or disable global interrupt.
* If there is L1-DCache, core flushes all L1-DCache and waits till it is done (refer csr ccm_pipe in CCM document).
* Core sets the value of CSR sleepvalue to 1, then execute the WFI instruction.

* The PMU of SoC observers the core’s core_wfi_mode is 1 and the core_sleep_value is 1, then it can turn off all this
core’s input clocks and then turn off the core’s power.

Note:

1. If user needs to save the status of core and let core to power on from the point where core powers down (called
software retention), user needs to define the scope of “status” (including core status and SoC status ), and implement
an always on memory in the SoC, then core can save the “status” to the always on memory and leave a flag of warm
reset in the memory, when core powers on , the first thing is to read the flag in the always on memory and then
decide it is a warm reset or code reset, if warm reset, store the status of memory and begin to run. If user needs more
consultant, please contact Nuclei Support.

21.2 Power Down One Core in the Cluster

As Nuclei 900 Series support Cluster Configuration, in the cluster it has N SMP cores, so it can only power down one core
in this cluster. The programing model/flow to power down one core in a cluster is as following:

* The core finishes the application task, mask all interrupts or disable global interrupt.
e If there is L1-DCache, core flushes all L1-DCache and waits till it is done (refer csr ccm_pipe in CCM document).

* If the core has enabled smp, then core can query and wait the smp transaction done; and query and wait the smp
snoop by other agents done.

* The core disable smp.

» The core sets the value of CSR sleepvalue to 1, then execute the WFI instruction.
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The PMU of SoC observers the core’s core_wfi_mode is 1 and the core_sleep_value is 1, then it can turn off the
core’s input clocks and then turn off the core’s power.

21.3 Power Down One Cluster

As Nuclei 900 Series support Cluster Configuration, it can power down the whole cluster. The programing model/flow to
power down one cluster is as following:

Define a master core in the cluster (usually core0), then all other cores in the cluster belongs to slave core (corel ~
coren).

All slave cores follows the flow of Power Down One Core in the Cluster (page 106).
Master core can query the PMU of SoC and know that all slave cores has entered into WFI mode.

Master core mask all interrupts/disable global interrupt , flush its all L1 D-Cache ,then flush all cluster cache and
wait till it is done.

Master core sets the value of CSR sleepvalue to 1, then execute the WFI instruction.

The PMU of SoC observers all cores’ core_wfi_mode are 1 and the core_sleep_value are 1, then it can turn off the
cluster (or all core’s) input clocks and then turn off the cluster’s power.

21.3.
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22.1 CSR Overview

Nuclei processor core CSRs Descriptions

CSR (Control and Status Registers) is part of RISC-V standard privileged architecture. Basically, Nuclei processor core
are following and compatible to RISC-V standard CSR definitions, but there are some additions and enhancements to the
original standard spec.

To respect the RISC-V standard, this document may not repeat the contents of original RISC-V standard, but will highlight

the additions and enhancements of Nuclei defined.

22.2 Nuclei processor core CSRs List

In this CSRs List of Nuclei processor core, there are RISC-V standard CSRs and customized CSRs. Following table only

describes the customized CSRs.

Table 22.1: Customized CSRs in the Nuclei processor core

Address R&W Name Description

0x307 MRW mtvt ECLIC Interrupt Vector Table Base Address
0x320 MRW mcountinhibit Customized register used to control the on & off of counters
0x346 MRO mintstatus Current Interrupt Level

0x348 MRW mscratchcsw Scratch swap register for privileged mode
0x349 MRW mscratchcswl Scratch swap register for interrupt mode and normal mode
0x390 MRW mlwid WorldGuard for security

0x510 S-SRW sattriQ_base Base address of Secure Region O to set attribute
0x5f1 S-SRW sattri0_mask Mask(size) of Secure Region O to set attribute
0x512 S-SRW sattril _base Base address of Secure Region 1 to set attribute
0x5f3 S-SRW sattril_mask Mask(size) of Secure Region 1 to set attribute
0x5t4 S-SRW sattri2_base Base address of Secure Region 2 to set attribute
0x5f5 S-SRW sattri2_mask Mask(size) of Secure Region 2 to set attribute
0x5f6 S-SRW sattri3_base Base address of Secure Region 3 to set attribute
0x5f7 S-SRW sattri3_mask Mask(size) of Secure Region 3 to set attribute
0x5f8 S-SRW sattri4_base Base address of Secure Region 4 to set attribute
0x5f9 S-SRW sattri4_mask Mask(size) of Secure Region 4 to set attribute
Ox5fa S-SRW sattri5_base Base address of Secure Region 5 to set attribute
0x5fb S-SRW sattri5_mask Mask(size) of Secure Region 5 to set attribute
0Ox5fc S-SRW sattri6_base Base address of Secure Region 6 to set attribute
0x5fd S-SRW sattri6_mask Mask(size) of Secure Region 6 to set attribute
0Ox5fe S-SRW sattri7_base Base address of Secure Region 7 to set attribute
Ox51ff S-SRW sattri7_mask Mask(size) of Secure Region 7 to set attribute
0x7¢c0 MRW milm_crtl Enable/Disable the ILM address space

continues on next page
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Table 22.1 — continued from previous page

Address R&W Name Description

0x7cl MRW mdlm_crtl Enable/Disable the DLM address space

0x7c2 MRW mecc_code ECC code injection register, can be used to simulate ECC error

0x7c3 MRO mnvec Customized register used to indicate the NMI handler entry ad-
dress

0x7c4 MRW msubm Customized register storing current trap type and the previous
trap type before trapped

0x7c6 MRW mstack_ctrl Customized register to control Stack Check function

0x7c7 MRW mstack_bound Customized register to store the bound of or track stack top for
Stack Check.

0x7c8 MRW mstack_base Customized register to store the stack base for Stack Check.

0x7¢c9 MRW mdcause Customized register storing current trap’s detailed cause

0Ox7ca MRW mcache_ctl Customized register to control the Cache features

0x7d0 MRW mmisc_ctl Customized register controlling the selection of the NMI Han-
dler Entry Address

0x7dd MRW mtlb_ctl Customized register to control the TLB

0x7de MRW mecc_lock To lock ECC configure registers, then all the ECC related CSRs
cannot be modified, unless by reset

0x7e2 MRW mfplémode Customized register used to set 16 bit float precision mode

0x7eb MRW pushmsubm Customized register used to push the value of msubm into the
stack memory

0x7ec MRW mtvt2 Customized register used to indicate the common handler entry
address of non-vectored interrupts

0x7ed MRW jalmnxti Customized register used to enable the ECLIC interrupt. The
read operation of this register will take the next interrupt,return
the entry address of next interrupt handler, and jump to the cor-
responding handler at the same time

Ox7ee MRW pushmcause Customized register used to push the value of mcause into the
stack memory

Ox7ef MRW pushmepc Customized register used to push the value of mepc into the
stack memory

0x7f0 MRW mppicfg_info PPI Configuration Information

0x7fl1 MRO mfiocfg_info FIO Configuration Information

0x7f3 MRW mattriQ_base Base address of Region 0 to set attribute

0x7f4 MRW mattri0_mask Mask(size) of Region O to set attribute

0x7f5 MRW mattril_base Base address of Region 1 to set attribute

0x7f6 MRW mattril_mask Mask(size) of Region 1 to set attribute

0x719 MRW mattri2_base Base address of Region 2 to set attribute

0x7fa MRW mattri2_mask Mask(size) of Region 2 to set attribute

0x7fb MRW mattri3_base Base address of Region 3 to set attribute

0x7fc MRW mattri3_mask Mask(size) of Region 3 to set attribute

0x7fd MRW mattri4_base Base address of Region 4 to set attribute

0x7fe MRW mattri4_mask Mask(size) of Region 4 to set attribute

0x7f7 MRO mirgb_info IREGION Configuration Information

0x810 URW wfe Customized register used to control the WFE mode

0x811 URW sleepvalue Customized register used to indicate the WFI sleep mode

0x812 URW txevt Customized register used to send an event

0xbc0 MRW mecc_ctrl ECC Control Register

Oxbc4 MRW mecc_status ECC Status and Control Register

0xbc8 MRW mmacro_dev_en Enable Bit for Dev Region setting in RTL Configuration Stage

0xbc9 MRW mmacro_noc_en Enable Bit for Non-Cacheable Region setting in RTL Configu-
ration Stage

Oxbca MRW mmacro_ca_en Enable Bit for Cacheable Region setting in RTL Configuration
Stage

0xbe0 MRW mattri5_base Base address of Region 5 to set attribute

Oxbel MRW mattri5_mask Mask(size) of Region 5 to set attribute

0Oxbe2 MRW mattri6_base Base address of Region 6 to set attribute

continues on next page

22.2. Nuclei processor core CSRs List

109



Nuclei® RISC-V Instruction Set Architecture Specification

Table 22.1 — continued from previous page

Address R&W Name Description

Oxbe3 MRW mattri6_mask Mask(size) of Region 6 to set attribute

Oxbed MRW mattri7_base Base address of Region 7 to set attribute

Oxbe5 MRW mattri7_mask Mask(size) of Region 7 to set attribute

0xdcO SRO shartid HARTID for S-Mode.

Oxfcl MRO mdcfg_info DLM and D-Cache configuration information

0xfcO MRO micfg_info ILM and I-Cache configuration information

Oxfcl MRO mdcfg_info DLM and D-Cache configuration information

0Oxfc2 MRO mcfg_info Processor configuration information

0x1A0 SRW spmpcfg0 Supervisor physical memory protection configuration

Ox1A1 SRW spmpcfgl Supervisor physical memory protection configuration

0x1A2 SRW spmpcfg2 Supervisor physical memory protection configuration

0x1A3 SRW spmpcfg3 Supervisor physical memory protection configuration

0x1BO SRW spmpaddr0 Supervisor physical memory protection address register

0x1B1 SRW spmpaddrl Supervisor physical memory protection address register

. SRW . e

(0x1BO+n) SRW spmpaddrn Supervisor physical memory protection address register

0x107 SRW stvt Supervisor Trap-handler vector table base address

0x146 SRW sintstatus Supervisor current interrupt level

0x148 SRW sscratchcsw Scratch swap register for multiple privilege modes

0x947 SRW jalsnxti Jumping to next supervisor interrupt handler address and
interrupt-enable register

0x948 SRW stvt2 ECLIC non-vectored supervisor interrupt handler address reg-
ister

0x949 SRW pushscause Push scause to stack

0x94a SRW pushsepc Push sepc to stack

0x9c0 SRW sdcause Detail information for scause

Note:

MRW: Machine Mode Readable/Writeable.
MRO: Machine Mode Read-Only.

¢ URW: User Mode Readable/Writeable.

URO: User Mode Read-Only.
S-SRW: Secure State S Mode Readable/Writeable

22.3 Accessibility of CSRs in the Nuclei processor core

The CSRs Accessibility in the Nuclei processor core:

* Read or write to a non-existent CSR will raise an Illegal Instruction Exception.

* Write to RO CSRs will raise an Illegal Instruction Exception.

— Note: According to the RISC-V standard, the URO registers like cycle, cycleh, time, timeh, instret, instreth are
special, the read accessibility of which are determined by the corresponding field in mcounteren.

* Access the higher privilege mode CSR raise an Illegal Instruction Exception. For example, in User Mode accessing
to MRO or MRW CSRs will raise an Illegal Instruction Exception.
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22.4 RISC-V Standard CSRs Supported in the Nuclei processor core

These CSRs are following RISC-V standard privileged architecture specification. This document will not repeat its content
here, please refer to RISC-V standard privileged architecture specification for more details.

This chapter only introduces the RISC-V Standard CSRs supported in the Nuclei processor core, but those CSRs who also
have some unique differences implemented in Nuclei processor core.

22.4.1 mie

In Nuclei processor core, the format and features of CSR mie is same as RISC-V standard, please refer to RISC-V standard
privileged architecture specification for more details of CSR mie.

But note: the mie CSR is not effective when the core is in the CLIC mode, and the readout of mie is always 0, the writing
is ignored.

22.4.2 mip

In Nuclei processor core, the format and features of CSR mip is same as RISC-V standard, please refer to RISC-V standard
privileged architecture specification for more details of CSR mip.

But note: the mip CSR is not effective when the core is in the CLIC mode, and the readout of mip is always 0, the writing
is ignored.

22.4.3 marchid
marchid is to indicate the core series . marchid[MXLEN-1:16] is reserved for future use. marchid[15:0] indicates the core
series name, for example, N600 is 0x0600, NX607 is 0xb607, UX608 is 0xc608. The format is as followed:
15 12 11 8 7 4 3 0
FirstSeriesName SecondSeriesName ThirdSeriesName LastSeriesName
R R R R

22.4.4 mimpid

mimpid is to indicate the core product version (also the RTL version), mimpid[MXLEN-1:24] is reserved for future use ,
mimpid[23:0] indicates the core product version X.Y.Z, X/Y/Z are all hexadecimal number and each occupies 8 bits. The
format is as followed:

23 16 15 8 7 0
FirstVerNum MidVerNum LastVerNum
R R R

22.4.5 mhartid

In Nuclei processor core, the format and features of CSR mhartid is same as RISC-V standard, please refer to RISC-V
standard privileged architecture specification for more details of CSR mhartid.

In the Nuclei processor core, hart ID is controlled by input signal core_mbhartid.

Note:
* According to RISC-V architecture, one hart is required to have a known hart ID of 0, other harts ID can be in 1~1023.

* In Nuclei Subsystem Design with multi cluster of Nuclei core, it uses the bits O ~ 7 to reflect the hart ID/Num and
bits 8 ~ 15 to reflect the cluster ID/Num in this CSR.
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22.4.6 mtvec

The mtvec register holds the entry address of the interrupt and exception handler. Field of mtvec register is shown in
following table.

* When mtvec holds the exception entry address:
— The value of the address field must always be aligned on a 64-byte boundary.

* When mtvec holds the interrupt entry address:
— When mtvec. MODE != 6’b000011, the processor uses the CLINT interrupt mode.
— When mtvec. MODE = 6’b00001 1, the processor uses the CLIC interrupt mode.

% See Non-Vectored Processing Mode (page 34) for more information about non-vectored mode interrupt
handler entry address.

% See Vectored Processing Mode (page 37) for more information about vectored mode interrupt handler
entry address.

Table 22.2: mtvec register

Field Bits Description
ADDR MXLEN-1:6 mtvec address
MODE 5:0

MODE field determine interrupt mode: 000011 means CLIC inter-
rupt mode; others means CLINT interrupt mode.

22.4.7 mcause

The mcause is written with a code indicating the reason that caused the trap. The format and features of CSR mcause is
basically same as RISC-V standard, please refer to RISC-V standard privileged architecture specification for more details.
But in CLIC mode for Nuclei processor core, there some additional fields added to support CLIC mode interrupt handling.

The mcause register is formatted as shown in following table:

Table 22.3: mcause register

Field Bits Description
INTERRUPT MXLEN-1 Current trap type:

0: Exception or NMI;

1: Interrupt.
Reserved MXLEN-2:31 Reserved 0
MINHV 30 Indicate processer is reading interrupt vector table
MPP 29:28 Privilege mode before interrupt
MPIE 27 Interrupt enable before interrupt
Reserved 26:24 Reserved 0
MPIL 23:16 Previous Interrupt Level
Reserved 15:12 Reserved 0
EXCCODE 11:0 Exception/Interrupt Encoding

Note:

¢ Filed of MINHV, MPP, MPIE and MPIL are only effect in CLIC mode. When in CLINT mode, these field is masked
read as zero, write ignored.

 In CLIC mode, the mstatus. MPIE and mstatus.MPP are the mirror images of mcause.MPIE and mcause.MPP.

¢ For overflow of Stack Check, the mcause. EXCCODE is 0x18; for underflow of Stack Check, the mcause. EXCCODE
is 0x19.

* The mcause. EXCCODE of NMI can be 0x1 or Oxfff, the value is controlled by mmisc_ctl, see more detail in
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mmisc_ctl (page 120).

22.4.8 mcycle and mcycleh
The RISC-V architecture defines a 64-bits width cycle counter which indicates how many cycles the processor has executed.
Whenever the processor is working, the counter will increase automatically.

The mcycle register records the lower 32-bits of counter and mcycleh records the higher 32-bits. The format and features
of CSR mcycle/mcycleh are basically same as RISC-V standard, please refer to RISC-V standard privileged architecture
specification for more details.

But in Nuclei processor core, considering the counter increases the power consumption, there is an extra bit in the cus-
tomized CSR mcountinhibit that can pause the counter to save power when users don’t need to monitor the performance
through the counter. See Section mcountinhibit (page 113) for more information.

22.4.9 minstret and minstreth
The RISC-V architecture defines a 64-bits width counter which records how many instructions have been executed suc-
cessfully.

The minstret register records the low 32-bits of counter and minstreth records the high 32-bits. The format and features of
CSR minstret/minstreth are basically same as RISC-V standard, please refer to RISC-V standard privileged architecture
specification for more details.

But in Nuclei processor core, considering the counter has power consumption, there is an extra bit in the customized CSR
mcountinhibit that can turn off the counter to save power when users don’t need to learn the performance through the
counter. See Section mcountinhibit (page 113) for more information.

22.5 Customized CSRs supported in Nuclei processor core

This section introduces customized CSRs in the Nuclei processor core.

22.5.1 mcountinhibit

The mcountinhibit register controls the counting of mcycle/mcycleh and minstret/minstreth registers to save power when
users don’t need them.

Table 22.4: mcountinhibit register

Field Bits Description

Reserved MXLEN-1:3 Reserved 0

IR 2 When IR is 1, minstret/minstreth is stop counting.
Reserved 1 Reserved 0

CY 0 When CY is 1, mcycle/mcycleh is is stop counting.

22.5.2 milm_ctl

The milm_ctl register controls the ILM (Instruction Local Memory) address space to enable or disable it based on user;™s
application scenarios.
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Table 22.5:

milm_ctl register

Field

Bits

Description

ILM_BPA

MXLEN-1:10

Read-Only. The base physical address of ILM. For example,
the instruction local memory of size 4KB starts at address
12KB (0x3000), then the ILM_BPA is 0xC (take the upper
22 bits of 0x3000).

Reserved

Reserved 0

ILM_ECC_CHK_EN

Controls to check the ECC Code or not when core access to
ILM. This bit can be turned on for injecting ECC errors to test
the ECC handler.

0: Disable to check the ECC codes (Default)

1: Enable to check the ECC codes
Note: When ILM or ECC is not configured, this field is tied to
0

ILM_ECC_INJ_EN

Controls to inject the ECC Code in CSR mecc_code to ILM.
0: Disable to inject the ECC codes (Default)
1: Enable to inject the ECC codes
Note: When ILM or ECC is not configured, this field is tied to
0

ILM_ECC_EXCP_EN

ILM double bit ECC exception enable control:

0: ECC error will not trigger exception (Default)

1: ECC error will trigger exception
Note: When ILM or ECC is not configured, this field is tied to
0

ILM_ECC_EN

ILM ECC feature enable control.

0: Disable ECC

1: Enable ECC (default)
Note: When ILM or ECC is not configured, this field is tied to
0.

ILM_ENABLE

Instruction Local Memory enable bit:

0: ILM is disabled

1: ILM is enabled (default)
Note: This bit only effects core access ILM, dose not effect
master of Slave Port.

22.5.3 mdim_ctl

The mdlm_ctl register controls the DLM (Data Local Memory) address space to enable or disable it based on user’s

application scenarios.

Table 22.6: mdlm_ctl register

Field Bits Description

DLM_BPA MXLEN-1:10 Read-Only. The base physical address of DLM. It has to be
aligned to multiple of DLM size. For example, data local
memory of size 4KB starts at address 12KB (0x3000), then
the DLM_BPA is 0xC (take the upper 22 bits of 0x3000).

Reserved 9:5 Reserved 0

DLM_ECC_CHK_EN 4 Controls to check the ECC Code or not when core access to

DLM. This bit can be turned on for injecting ECC errors to
test the ECC handler.

0: Disable to check the ECC codes (Default)

1: Enable to check the ECC codes
Note: When DLM or ECC is not configured, this field is tied
to 0.

continues on next page
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Table 22.6 — continued from previous page

Field Bits

Description

DLM_ECC_INJ_EN 3

Controls to inject the ECC Code in CSR mecc_code to DLM.
0: Disable to inject the ECC codes (Default)
1: Enable to inject the ECC codes
Note: When DLM or ECC is not configured, this field is tied
to 0

DLM_ECC_EXCP_EN 2

DLM double bit ECC exception enable control.

0: Disable double bit ECC exception (default)

1: Enable double bit ECC exception
Note: When DLM or ECC is not configured, this field is tied
to 0

DLM_ECC_EN 1

DLM ECC enable feature control.

0: Disable ECC ;

1: Enable ECC (default).
Note: When DLM or ECC is not configured, this field is tied
to 0.

DLM_ENABLE 0

Data Local Memory enable bit.

0: DLM is disabled;

1: DLM is enabled (default).
Note: This bit only effects core access ILM, dose not effect
master of Slave Port.

22.5.4 mnvec

The Nuclei processor core customized CSR mnvec register holds the NMI entry address.

In order to understand this register, please see Chapter NMI Handling in Nuclei processor core (page 19) for more infor-

mation about NMI.

During a processor running a program, the program will be forced to jump into a new PC address when an NMI is triggered.
The PC address is determined by mnvec.The value of mnvec is controlled by mmisc_ctl, see more information in Section

mmisc_ctl (page 120).

22.5.5 msubm

The Nuclei processor core customized CSR msubm register holds the current machine sub-mode and the machine sub-
mode before the current trap. See Section Machine Sub-Mode added by Nuclei (page 15) for details.

Table 22.7: msubm register

Field Bits

Description

Reserved MXLEN-1:10

Reserved O

PTYP 9:8

Machine sub-mode before entering the trap:
0: Normal Machine Mode;
1: Interrupt Handling Mode;
2: Exception Handing Mode;
3: NMI Handing Mode.

TYP 7:6

Current sub-mode:
0: Normal Machine Mode;
1: Interrupt Handling Mode;
2: Exception Handing Mode;
3: NMI Handing Mode.

Reserved 5:0

Reserved 0.
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22.5.6 mstack ctrl

The Nuclei processor core customized CSR mstack_ctrl register is to control the Stack Check realted function.

Table 22.8: mstack_ctrl register

Field Bits Description
Reserved MXLEN-1:3 Reserved 0
MODE 2 Mode of stack checking:

0: Overflow and Underflow check (Default) ;
1: Track the stack top.

UDF_EN 1 Stack underflow check enable:

0: Disable (Default);

1: Enable;
When MODE is 0, and UDF_EN is 1, the hardware will check stack un-
derflow.
OVF_TRACK EN | 0 Stack overflow check or track enable:

0: Disable (Default);

1: Enable;
When MODE is 0, and OVF_TRACK_EN is 1, the hardware will check
stack overflow; when MODE is 1, and OVF_TRACK_EN is 1, the hard-
ware will track the stack top.

Note:
* Currently only 300 Series v4.2.0 or later support this Stack Check function.

* The Stack Check can work as excpect only when the Stack downward growth.

22.5.7 mstack_bound

The Nuclei processor core customized CSR mstack_bound register is check stack overflow or track the stack top.

Table 22.9: mstack_bound register

Field Bits Description
BOUND MXLEN-1:0 Stack top’s value for stack overflow check or track (Default value is all
ones):

When MODE is 0, and OVF_TRACK_EN is 1, if the sp is
smaller than BOUND, the core will report Stack Overflow
exception and the mcause. EXCCODE is 0x18.

When MODE is 1, and OVF_TRACK_EN is 1, if the sp is
smaller than BOUND, the BOUND’s value will be updated
to sp.

Note:

¢ User should set the mstack_bound before mstack_ctrl to check stack overflow.
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22.5.8 mstack base

The Nuclei processor core customized CSR mstack_base register is check stack underflow.

Table 22.10: mstack_base register
Field Bits Description
BASE MXLEN-1:0 Stack base’s value for stack underflow check (Default value is all ones):
When MODE is 0, and UDF_TRACK_EN is 1, if the sp is
bigger than BASE, the core will report Stack Underflow ex-
ception and the mcause. EXCCODE is 0x19.

Note:

¢ User should set the mstack_base before mstack_ctrl to check stack underflow.

22.5.9 mdcause

Since there might be some exceptions share the same mcause. EXCCODE value. To further record the differences, Nuclei
processor core customizes CSR mdcause register to record the detailed information about the exception.

Table 22.11: mdcause register

Field Bits Description
Reserved MXLEN-1:3 Reserved 0

continues on next page
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Table 22.11 — continued from previous page
Field Bits Description
MDCAUSE 2:0 Further record the detailed information about the exception.
When mcause. EXCCODE = 1 (Instruction access fault):
0: Reserved
1: PMP permission violation
2: Bus error
3-6: Reserved
7: ECC error
When mcause. EXCCODE = 5 (Load access fault):
0: Reserved
1: PMP permission violation bus error
2: Bus error caused by core memory read
3: Bus error caused by NICE write back.
4-6: Reserved
7: ECC error
Note: although this error ideally is nothing to do with the Load access
fault, but they just shared the same mcause. EXCCODE to simplify the
hardware implementation.
When mcause.EXCCODE = 7 (Store/AMO access fault):
0: Reserved
1: PMP permission violation bus error
2: Bus error caused by core memory write
3-6: Reserved
7: ECC error
When mcause. EXCCODE = 12 (Instruction page fault):
0-4: Reserved
5: Instruction page fault caused by MMU
6: Instruction page fault caused by SPMP
7: ECC error
When mcause. EXCCODE = 13 (Load page fault):
0-4: Reserved
5: Load page fault caused by MMU
6: Load page fault bus error caused by SPMP
7: ECC error
When mcause. EXCCODE = 15 (Store page fault):
0-4: Reserved
5: Store page fault caused by MMU
6: Store page fault bus error caused by SPMP
7: ECC error

22.5.10 mcache_ctl

Nuclei processor core customizesd CSR mcache_ctl register to control the I-Cache and D-Cache features.

Table 22.12: mcache_ctl register

Field Bits Description
Reserved MXLEN- Reserved 0.
1:23

DC_PREFETCH_EN 22 D-Cache CMO prefetch enable control:

0: Disable (default)

1: Enable
DC_ECC_CHK_EN 21 Controls to check the ECC Code when core access to D-Cache.

0: Disable to check the ECC codes (Default)

1: Enable to check the ECC codes

Note: When D-Cache or ECC is not configured, this field is tied to 0

continues on next page
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Table 22.12 — continued from previous page

Field

Bits

Description

DC_DRAM_ECC_INJ_EN

20

Controls to inject the ECC Code in CSR mecc_code or not to D-
Cache data rams. This bit can be turned on for injecting ECC errors
to test the ECC handler.

0: Disable to inject the ECC codes (Default)

1: Enable to inject the ECC codes
Note: When D-Cache or ECC is not configured, this field is tied to
0

DC_TRAM_ECC_INJ_EN

19

Controls to inject the ECC Code in CSR mecc_code or not to D-
Cache tag rams. This bit can be turned on for injecting ECC errors
to test the ECC handler.

0: Disable to inject the ECC codes (Default)

1: Enable to inject the ECC codes
Note: When D-Cache or ECC is not configured, this field is tied to
0.

DC_ECC_EXCP_EN

18

D-Cache double bit ECC exception enable control:

0: ECC error will not trigger exception (Default)

1: ECC error will trigger exception
Note: When D-Cache or ECC is not configured, this field is tied to
0

DC_ECC_EN

17

D-Cache ECC enable control:

0: Disable ECC

1: Enable ECC (Default)
Note: When D-Cache or ECC is not configured, this field is tied to
0.

DC_EN

16

D-Cache enable control:
0: D-Cache Disable (default)
1: D-Cache Enable

Reserved

15:10

Reserved 0.

IC_PREFETCH_EN

I-Cache CMO prefetch enable control:
0: Disable (default)
1: Enable

IC_ECC_CHK_EN

Controls to check the ECC when core access to I-Cache.
0: Disable to check the ECC codes (Default)
1: Enable to check the ECC codes
Note: When I-Cache or ECC is not configured, this field is tied to 0

IC_CANCEL_EN

Supported only in 900 series, I-Cache change flow canceling enable
control:

0: Disable canceling current accesses in icache el stage

when change flow happens

1: Enable canceling previous accesses in icache el stage

when change flow happens
Note: When I-Cache is not configured, this field is tied to 0.

IC_PF_EN

Supported only in 900 series, I-Cache prefetch enable control:
0: Disable prefetching
1: Enable prefetching, when I-Cache miss, prefetch
next-line into I-Cache when not cross 4K Byte.

Note: When I-Cache is not configured, this field is tied to 0.

IC_DRAM_ECC_INJ_EN

Controls to inject the ECC Code in CSR mecc_code to I-Cache data
rams. This bit can be turned on for injecting ECC errors to test the
ECC handler.

0: Disable to inject the ECC codes (Default)

1: Enable to inject the ECC codes
Note: When I-Cache or ECC is not configured, this field is tied to O.

continues on next page
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Table 22.12 — continued from previous page

Field

Bits

Description

IC_TRAM_ECC_INJ_EN

4

Controls to inject the ECC Code in CSR mecc_code to I-Cache tag
rams. This bit can be turned on for injecting ECC errors to test the
ECC handler.

0: Disable to inject the ECC codes (Default)

1: Enable to inject the ECC codes
Note: When I-Cache or ECC is not configured, this field is tied to 0.

IC_ECC_EXCP_EN

I-Cache double bit ECC exception enable control:
0: ECC error will not trigger exception (Default)
1: ECC error will trigger exception
Note: When I-Cache or ECC is not configured, this field is tied to O.

IC_ECC_EN

I-Cache ECC enable control:
0: Disable ECC
1: Enable ECC (Default)
Note: When I-Cache or ECC is not configured, this field is tied to O.

IC_SCPD_MOD

I-Cache Scratchpad Mode enable control:

0: I-Cache works in the normal mode (default)

1: I-Cache works in the Scratchpad mode. When under

this mode, the Data SRAM of I-Cache will be reused

and downgraded to memory mapped SRAM which can

be accessed by instruction fetch and load/store access,

like ILM and DLM, but called as Scratchpad here.
Note: this mode only take effect when IC_EN bit is disabled by soft-
ware. (default)

IC_EN

I-Cache enable control:
0: I-Cache Disable (default)
1: I-Cache Enable

Note: only when the [-Cache is disabled (IC_EN bit as 0) and scratchpad mode is enabled, i.e., mcache_ctl[1:0] is 2°b10
(default value after reset), I-Cache really works as the Scratchpad.

22.5.11 mmisc_ctl

The Nuclei processor core customized CSR mmisc_ctl controls many Nuclei micro-architecture implementation related

features.
Table 22.13: mmisc_ctl register
Field Bits Description
Reserved MXLEN-1:17 Reserved 0.
CSR_EXCL_ENABLE 17 Exclusive instruction(Ir,sc) on Non-cacheable/Device memory can
send exclusive flag in memory bus.
0: Disable exclusive flag goes to Memory Interface (Re-
set Value).
1: Enable exclusive flag goes to Memory Interface.
Reserved 16:13 Reserved 0.
LDSPEC_ENABLE 12 Enable or disable the Load Speculative goes to Mem Interface:
0: Disable Load Speculative goes to Memory Interface
(Reset Value).
1: Enable Load Speculative goes to Memory Interface.
SIJUMP_ENABLE 11 Control the SIJUMP mode of trace:

0: SITUMP mode is off(Reset Value);
1: SITUMP mode is on.

continues on next page
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Table 22.13 — continued from previous page
Field Bits Description
IMRETURN_ENABLE 10 Control the IMRETURN mode of trace:
0: IMRETURN mode is off(Reset Value).
1: IMRETURN mode is on.

NMI_CAUSE_FFF 9 Control mnvec and mcause. EXCCODE of NMI:

0: The value of mnvec equals the PC address after reset,
mcause. EXCCODE of NMI is 0x1;

1: The value of mnvec is the same as the value of mtvec
, mcause. EXCCODE of NMI is Oxfff.

CORE_BUS_ERR 8 Control the bus error caused by core is exception or interrupt:
0: Core Bus Error caused by core is an exception; When
Core Bus Error is an excetpion, please check Core Bus
Error Exception (page 121) for more details.

1: Core Bus Error caused by core is a interrupt. When
Core Bus Error is a interrupt, please check Core Bus Er-
ror Interrupt (page 122) for more details.

ZCMT_ZCMP_EN 7 Control the Zc Ext uses the cfdsp of D Ext’s encoding or not.
When there is Zc¢ and no D Ext, this bit is always 1 and
read only.

When there is Zc and D, the reset value is 0; and if FPU
is off by software, then software can write 1 to enable
Zc.

UNALGN_ENA_BLE 6 Enable or disable misaligned load/store access, if disabled, accessing
misaligned memory locations will trigger an Address Misaligned ex-
ception:

0: Disable misaligned load/store access;

1: Enable misaligned load/store access.
Note: This field only takes effects for load/store specified in I/F/D Ex-
tension, for load/store specified in A Extension, misaligned accesses
always trigger an Address Misaligned exception.
Reserved 5:4 Reserved 0.
BPU_ENABLE 3 Enable or disable the BPU Unit:

0: Disable the BPU Unit;

1: Enable the BPU Unit.
Note: BPU is on by default after reset. If BPU is disable by software,
then all branches are predicted as jump statically until the BPU is
enable again.
So software should set this bit to 1 to enable BPU.
Reserved 2:0 Reserved 0.

22.5.11.1 Core Bus Error Exception

Currently Nuclei processor core implments 7 types Core Bus Error, when it is configured to be exception (by CSR
mmisc_ctl), the mapping of Core Bus Error type and CSR coding of mcause and mdcause is defined in below table.

Table 22.14: Core Bus Err Type and Exception Coding Mapping

Core Bus Err Type mcause Exception Coding mdcause
Bus Err caused by core memory read 5 (load access fault) 2
Bus Err caused by core memory write 7 (store access fault) 2
Bus Err caused by core memory read PMP violation 5 (load access fault) 1
Bus Err caused by core memory write PMP violation 7 (store access fault) 1
Bus Err caused by core memory read ECC error 5 (load access fault) 7
Bus Err caused by core memory write ECC error 7 (store access fault) 7

continues on next page
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Table 22.14 — continued from previous page

Core Bus Err Type mcause Exception Coding mdcause
Bus Err caused by core memory read SPMP violation 13 (load page fault) 6
Bus Err caused by core memory write SPMP violation 15 (store page fault) 6
Bus Err caused by core’s NICE write back 5 (load access fault) 3

22.5.11.2 Core Bus Error Interrupt

Currently Nuclei processor core implments 7 types Core Bus Error, when it is configured to be interrupt (by CSR
mmisc_ctl), the mapping of Core Bus Error type and CSR coding of mcause and mdcause is defined in below table.
And it belongs to Internal Interrupt, and Interrupt ID is fixed to 18.

Table 22.15: Core Bus Err Type and Interrupt Coding Mapping

Core Bus Err Type mcause Interrupt Coding mdcause
Bus Err casued by core memory read 18 2
Bus Err casued by core memory write 18 2
Bus Err casued by core memory read PMP violation 18 1
Bus Err casued by core memory write PMP violation 18 1
Bus Err casued by core memory read ECC error 18 7
Bus Err casued by core memory write ECC error 18 7
Bus Err casued by core memory read SPMP violation 18 6
Bus Err casued by core memory write SPMP violation 18 6
Bus Err casued by core’s NICE write back 18 3

Note:

e As Core Bus Error Interrupt belongs to Internal Interrupt, both CLIC Mode or CLINT Mode (with PLIC), the

Interrupt ID is the same (18).

* In CLIC Mode, as Nuclei ECLIC can support 3 types of interrupt trigger and Core Bus Error Interrupt is edge type,

so besides to set clicintie[18] = 1’b1 to enable it , user should also set clicintattr[18].trig = 2’b01.

e In CLINT Mode (with PLIC), the Core Bus Error is controlled by CSR mie and mip. And user has no need to

consider the interrupt trigger type.

22.5.12 mtvt

This reigister is from the CLIC draft of RISC-V fast interrupt task group.

The mtvt register holds the base address of interrupt vector table (in CLIC mode), and the base address is aligned at least

64-byte/128-byte boundary. See Section (CLIC mode) Interrupt Vector Table (page 31) for more details.

In order to improve the performance and reduce the gate count, the alignment of the base address in mtvt is determined by
the actual number of interrupts, which is shown in the following table.

Table 22.16: mtvt alignment

Max Interrupt Number mtvt alignment in RV32 mtvt alignment in RV64
0to 16 64-byte 128-byte

17t0 32 128-byte 256-byte

33 to 64 256-byte 512-byte

65 to 128 512-byte 1IKB

129 to 256 1KB 2KB

257 to 512 2KB 4KB

513 to 1024 4KB 8KB

1025 to 2048 8KB 16KB

2049 to 4096 16KB 32KB
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22.5.13 mintstatus

This reigister is from the CLIC draft of RISC-V fast interrupt task group.

The mintstatus register holds the active interrupt level for all the privilege mode.

Table 22.17: mintstatus register

Field Bits Description

Reserved MXLEN-1:32 Reserved 0

MIL 31:24 The active interrupt level in machine mode.
Reserved 23:8 Reserved 0.

UIL 7:0 The active interrupt level in user mode.

22.5.14 mtvt2

mtvt2 is used to indicate the entry address of the common base handler shared by all ECLIC non-vectored interrupts. See
more information about mtvt2 in Section Non-Vectored Processing Mode (page 34).

Table 22.18: mtvt2 register

Field Bits Description

CMMON-CODE-ENTRY MXLEN-1:2 When mtvt2. MTVT2EN=1, this field determines the entry ad-
dress of interrupt common code in ECLIC non-vector mode.

Reserved 1 Reserved 0.

MTVT2EN 0 mtvt2 enable:

0: the entry address of interrupt common code in ECLIC non-
vector mode is determined by mtvec;

1: the entry address of interrupt common code in ECLIC
non-vector mode is determined by mtvt2.COMMON-CODE-
ENTRY.

22.5.15 jalmnxti

The Nuclei processor core customized CSR jalmnxti to reduce the delay for interrupt and accelerates interrupt tail-chaining.

The jalmnxti included all functionality of mnxti, besides it also include enabling the interrupt, handling the next inter-
rupt, jumping to the next interrupt entry address, and jumping to the interrupt handler. So, the jalmnxti can decrease the
instruction numbers to speed up the interrupt handling and tail-chaining.

See more information related tail-chaining in Section Interrupt Handling in Nuclei processor core (page 23).

22.5.16 pushmsubm

The Nuclei processor core customized CSR pushmsubm provides a method to store the value of msubm in memory space
which base address is SP with CSR instruction csrrwi.

For example:

csrrwi x0, PUSHMSUBM, 1

This instruction stores the value of msubm in SP+1*4 address.
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22.5.17 pushmcause

The Nuclei processor core customized CSR pushmcause provides a method to store the value of mcause in memory space
which base address is SP with CSR instruction csrrwi.

For example:

csrrwi x0, PUSHMCAUSE, 1

This instruction stores the value of mcause in SP+1*4 address.

22.5.18 pushmepc

The Nuclei processor core customized CSR pushmepc provides a method to store the value of mepc in memory space
which base address is SP with CSR instruction csrrwi.

For example:

csrrwi x0, PUSHMEPC, 1

This instruction stores the value of mepc in SP+1%4 address.

22.5.19 mscratchcsw

This reigister is from the CLIC draft of RISC-V fast interrupt task group.
The mscratchcsw register is useful to swap the value between the target register and mscratch when privilege mode change.

Using a CSR read instruction to perform mscratchcsw, when the privilege mode is changed after taking an interrupt,
following pseudo instruction operations are performed:

csrrw rd, mscratchcsw, rsl

// Pseudocode operation.
if (mcause.mpp!= M-mode) then {

t = rsl; rd = mscratch; mscratch = t;
} else {

rd = rsl; // mscratch unchanged.

}

// Usual use: csrrw sp, mscratchcsw, sp

When the processor takes an interrupt in a lower privilege mode, the processor enters a higher privilege mode to handle
the interrupt and need to store the status of processor into the stack before taking the interrupt. If the processor continues
to use SP in low privilege mode, data in the higher privilege mode will be saved in the memory space which is accessible
in the lower privilege mode.

RISC-V defines that when the processor is in a lower privilege mode, then data in SP of the higher privilege mode can be
stored in mscratch. And in this way, the value of SP can be recovered from mscratch when the processor goes back to the
higher privilege mode.

It will cost a lot of cycles to execute the program above using standard instructions, so RISC-V defines mscratchcsw
register. After entering an interrupt, the processor executes one mscratchcsw CSR instruction to swap the value between
mscratch and SP to recover the value of SP of the higher privilege mode. At the same time, copy the value of SP of the
lower privilege to mscratch. Before the mret instruction to exit interrupt, add a mscratchcsw instruction to swap value
between mscratch and SP. It will recover the SP value of the lower privilege mode and store the higher privilege mode
SP to mscratch again. In this way, only two instructions are needed to solve the stack pointer (SP) switching problem of
different privileged modes, which speeds up interrupt processing.
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22.5.20 mscratchcswl

This reigister is from the CLIC draft of RISC-V fast interrupt task group.

The mscratchcswl register is used to exchange the destination register with the value of mscratch to speed up interrupt
processing when switching between interrupt mode (not including exception) and normal mode.

Using the CSR instruction to read the register mscratchcswl, with unchanged privilege mode, the following register oper-
ations are performed when there is a switch between the interrupt handler and the application program:

csrrw rd, mscratchcswl, rsil

// Pseudocode operation.

if ( (0 == mcause.mpil) != (0 == mintstatus.mil) ) then {
t = rsl; rd = mscratch; mscratch = t;
} else {

rd = rsl; // mscratch unchanged.

}

// Usual use: csrrw sp, mscratchcswl, sp

In the same privilege mode, separating the interrupt handler task from the task space of the application task can increase
robustness, reduce space usage, and facilitate system debugging. The interrupt handler has a non-zero interrupt level while
the application task has a zero interrupt level. According to this feature, the RISC-V architecture defines the mscratchcswl
register. Similar to mscratchcsw, adding a CSR instruction of mscratchcswl to the beginning and the end of the interrupt
service routine enables a fast stack pointer switch between the interrupt handler and the regular application, ensuring the
separation of the stack space between the interrupt handler and the regular application.

22.5.21 sleepvalue

The Nuclei processor core customized CSR sleepvalue controls different sleep modes. See Section Enter the Sleep Mode
(page 103) for more information.

Table 22.19: sleepvalue register

Field Bits Description
Reserved MXLEN-1:1 Reserved 0.
SLEEPVALUE 0 Control WFI sleep mode:

0: shallow sleep mode (After WFI, it recommends SoC
to turn core_clk off);
1: deep sleep mode (After WFI, it recommends SoC to
turn core_clk and core_aon_clk both off).

Reset default value is 0.

22.5.22 txevt

The Nuclei processor core customized CSR txevt controls output events.

Table 22.20: txevt register

Field Bits Description
Reserved MXLEN-1:1 Reserved 0.
TXEVT 0 Event control:

0: No action;

1: The core will trigger a single-cycle pulse output signal
tx_evt as event signal. This bit will be automatically cleared
to O in the next cycle.

Reset default value is 0.
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22.5.23 wfe

The Nuclei processor core customized CSR wfe controls whether the processor should be awakened by interrupt or event.
See Section Wait for Event (page 104) for more information.

Table 22.21: wfe register

Field Bits Description
Reserved MXLEN-1:1 Reserved 0.
WFE 0 Control whether the processor should be awakened by interrupt or event.

0: The processor should be awakened by interrupt and NMI
in sleep mode;
1: The processor should be awakened by event and NMI in
sleep mode.

Reset default value is 0.

22.5.24 ucode

This register is from the P-extension draft of RISC-V P-extension task group.

This register only exists when the core has been configured to support the P extension. The CSR register ucode is used to
record if there is overflow happened in DSP instructions.

Table 22.22: ucode register

Field Bits Description
Reserved MXLEN-1:1 Reserved 0.
ov 0 Record if there is overflow happened in DSP instructions. If there is over-

flow then this field OV is set as 1, software can write O to this register to
clear it. Reset default value is O.

22.5.25 mcfg_info

This CSR is used to show the processor core’s configuration information.

Table 22.23: mcfg_info register

Field Bits Description

Reserved MXLEN-1:25 Reserved 0.

XLCZ 24 Indicate Core supports XLCZ or not, only active when ZC_XLCZ_EXT
is 1.

0: XLCZ Support;
1: No XLCZ support.

VNICE 23 Indicate Core supports VNICE or not:
0: No VNICE support;
1: VNICE support.

SAFETY_MECHA | 22:21 Indicate Core’s safety mechanism:
00: No Safety Mechanism;
01: Lockstep;

10: Lockstep + Split Mode;
11: ASIL-B.

ETRACE 20 Indicate Core supports Etrace or not:
0: No ETrace support;
1: ETrace support.

continues on next page
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Table 22.23 — continued from previous page

Field

Bits

Description

SEC_MODE

19

Indicate Core supports Smwg Extension or not:
0: No Smwg Extension support;
1: Smwg Extension support.

VPU_DEGREE

18:17

Indicate the VPU degree of parallel:
00: DLEN = 1/2 VLEN;
01: DLEN = VLEN;
others are reserved.

IREGION_EXIST

16

Shows the IREGION exist or not. It is Read Only.
0: IREGION not exist;
1: IREGION exists.

Note:
IREGION (Internal Region) means the address space of all
Private Peripherals in core is continuous and base address
is defined by IREGION. If no IREGION, user can seper-
ately configures the address space of each Private Peripheral.
Please check Private Peripherals chapter of each series data-
book for more details.
New version of Nuclei Core supports IREGION and it is
fixed in these new versions. Please check Configuration Op-
tions chapter of related databook for more details.

ZC_XLCZ_EXT

15

Indicate Core supports Zc and Xlcz Extension or not:
0: No Zc and Xlcz Extensions support;
1: Zc or Zc+Xlcz Extensions support.

DSP_N3

14

Global configuration for DSP N3 Extension Support:
0: No DSP N3 Extension support;
1: Has DSP N3 Extension support.

Note: Only take effect when DSP is configured.

DSP_N2

13

Global configuration for DSP N2 Extension Support:
0: No DSP N2 Extension support;
1: Has DSP N2 Extension support.

Note: Only take effect when DSP is configured.

DSP_NI1

12

Global configuration for DSP N1 Extension Support:
0: No DSP N1 Extension support;
1: Has DSP N1 Extension support.

Note: Only take effect when DSP is configured.

SMP

Global configuration for SMP support:
0: No SMP support;
1: Has SMP support.

DCACHE

10

Global configuration for D-Cache support:
0: No D-Cache support;
1: Has D-Cache support.

ICACHE

Global configuration for I-Cache support:
0: No I-Cache support;
1: Has I-Cache support.

DLM

Global configuration for IDLM support:
0: No DLM support;
1: Has DLM support.

continues on next page
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Table 22.23 — continued from previous page

Field

Bits

Description

ILM

Global configuration for ILMsupport:
0: No ILM support;
1: Has ILM support.

NICE

Global configuration for NICE support:
0: No NICE support;
1: Has NICE support.

PPI

Global configuration for PPI support:
0: No PPI support;
1: Has PPI support.

FIO

Global configuration for FIO support:
0: No FIO support;
1: Has FIO support.

PLIC

Global configuration for PLIC support:
0: No PLIC support;
1: Has PLIC support.

CLIC

Global configuration for CLIC support:
0: No CLIC support;
1: Has CLIC support.

ECC

Global configuration for ECC support:
0: No ECC support;
1: Has ECC support.

TEE

Global configuration for TEE support:
0: No TEE support;
1: Has TEE support.

22.5.26 micfg_info

This CSR is used to show the ILM and I-Cache configuration information.

Table 22.24: micfg_info register

Field Bits Description
Reserved MXLEN-1:23 Reserved 0.
ILM_ECC 22 ECC support for the instruction local memory (ILM):
0: No ECC support
1: Has ECC support
ILM_XONLY 21 Indicates if ILM is execute-only. If ILM is execute-only, load/store

instructions cannot access the ILM region:
0: ILM is not execute-only
1: ILM is execute-only

continues on next page
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Table 22.24 — continued from previous page

Field

Bits

Description

ILM_SIZE

20:16

0: OByte

: 256 Bytes
: 512 Bytes
1KB
2KB
4KB
8KB

: 16KB

: 32KB

9: 64KB

10: 128KB
11: 256KB
12: 512KB
13: IMB
14: 2MB
15: 4MB
16: SMB
17: 16MB
18: 32MB
19: 64MB
20: 128MB
21: 256MB
22: 512MB
others: Reserved

e AR A R

Indicates the size of ILM and the size should be power of 2:

Reserved

15:11

Reserved 0.

IC_ECC

10

ECC support for the I-Cache
0: No ECC support
1: Has ECC support

IC_LSIZE

9:7

I-Cache line size:
0: No I-Cache
1: 8 Bytes
2: 16 Bytes
3: 32 Bytes
4: 64 Bytes
5: 128 Bytes
others: Reserved

IC_WAY

6:4

I-Cache ways:
0: Direct-mapped
1 2 way
: 3 way
: 4 way
1 5 way
1 6 way
2 7 way
: 8 way

~N N RN

continues on next page
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Table 22.24 — continued from previous page

Field

Bits

Description

IC_SET

3:0

I-Cache sets per way:
0: 8

16

32

64

128

256

512

: 1024

: 2048

9: 4096

10: 8192

others: Reserved

e AR A R

22.5.27 mdcfg_info

This CSR is used to show the DLM and D-Cache configuration information.

Table 22.25: mdcfg_info register

Field

Bits

Description

Reserved

MXLEN-1:22

Reserved 0.

DLM_ECC

21

ECC support for the data local memory (DLM):
0: No ECC support
1: Has ECC support

DLM_SIZE

20:16

Indicates the size of DLM and the size should be power of 2:
0: OByte
: 256 Bytes
: 512 Bytes
1KB
2KB
4KB
8KB
: 16KB
: 32KB
: 64KB
10: 128KB
11: 256KB
12: 512KB
13: IMB
14: 2MB
15: 4AMB
16: 8MB
17: 16MB
18: 32MB
19: 64MB
20: 128MB
21: 256MB
22: 512MB
others: Reserved

A ol e

Nel

Reserved

15:11

Reserved 0.

continues on next page
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Table 22.25 — continued from previous page

Field

Bits

Description

DC_ECC

10

ECC support for the D-Cache
0: No ECC support
1: Has ECC support

DC_LSIZE

9:7

D-Cache line size:
0: No D-Cache
1: 8 Bytes
2: 16 Bytes
3: 32 Bytes
4: 64 Bytes
5: 128 Bytes
others: Reserved

DC_WAY

6:4

D-Cache ways:
0: Direct-mapped
: 2 way
: 3 way
1 4 way
: 5 way
: 6 way
2 7 way
: 8 way

~N QN BN =

DC_SET

3:0

D-Cache sets per way:
0: 8

16

32

64

128

256

2512

: 1024

12048

9: 4096

10: 8192

others: Reserved

A A ol ey

22.5.28 mtlbcfg_info

This CSR is used to show the TLB configuration information.

Table 22.26: mtlbcfg_info register

Field

Bits

Description

Reserved

MXLEN-1:22

Reserved 0.

DTLB_SIZE

21:19

DTLB size:

: No DTLB
: Reserved
: Reserved
: Reserved
: 8 entry

: 16 entry

: 32 entry

: 64 entry

NN kAW~ O

continues on next page
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Table 22.26 — continued from previous page
Field Bits Description
ITLB_SIZE 18:16 ITLB size:
0: No ITLB
: Reserved
: Reserved
: Reserved
: 8 entry
: 16 entry
: 32 entry
: 64 entry

~N NN =

Reserved 15:12 Reserved 0.

MTLB_NAPOT 11 TLB supports Svnapot or not:

0: No support

1: Support

MTLB_ECC 10 Main TLB supports ECC or not:
0: No ECC support;

1: Has ECC support.

Reserved 9:7 Reserved 0.
MTLB_WAY 6:4 Main TLB ways:

0: Direct-mapped
: 2 way

1 3 way

1 4 way

1 5 way

: 6 way

2 7 way

: 8 way

~N N BN =

MTLB_WAY_ENTRY 3:0 Main TLB Entry per way:
0:8

1: 16

32

64

128

256

1512

: 1024

1 2048

9: 4096

10: 8192

others: Reserved

e R A A

22.5.29 mppicfg_info

This CSR is used to show the PPI configuration information.

Table 22.27: mppicfg_info register

Field Bits Description

PPI_BPA MXLEN-1:10 The base physical address of PPIL. It has to be aligned to multiple of
PPI size. For example, to set up PPI of size 4KB starting at address
12KB (0x3000), we simply program DLM_BPA to 0xC (take the up-
per 22 bits of 0x3000).

Reserved 9:6 Reserved 0.

continues on next page
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Table 22.27 — continued from previous page
Field Bits Description
PPI_SIZE 5:1 Indicates the size of PPI and it should be power of 2:
0: Reserved
: 1KB
: 2KB
: 4KB
8KB
: 16KB
: 32KB
: 64KB
: 128KB
9: 256KB
10: 512KB
11: IMB
12: 2MB
13: 4AMB
14: 8MB
15: 16MB
16: 32MB
17: 64MB
18: 128MB
19: 256MB
20: 512MB
21: 1GB
22: 2GB
others: Reserved

PPI_EN 0 PPI enable
0: PPI disable
1: PPI enable(Default)

Note: this CSR only exists when PPI is configured.

22.5.30 mfiocfg_info

This CSR is used to show the FIO configuration information.

Table 22.28: mfiocfg_info register

Field Bits Description

FIO_BPA MXLEN-1:10 The base physical address of FIO. It has to be aligned to multiple
of FIO size. For example, to set up the FIO of size 4KB starting at
address 12KB (0x3000), we simply program DLM_BPA to 0xC (take
the upper 22 bits of 0x3000).

Reserved 9:6 Reserved 0.

continues on next page
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Table 22.28 — continued from previous page

Field

Bits

Description

FIO_SIZE

5:1

Indicates the size of FIO and it should be power of 2:
0: Reserved
: 1IKB
: 2KB
: 4KB
8KB
: 16KB
: 32KB
: 64KB
: 128KB
9: 256KB
10: 512KB
11: IMB
12: 2MB
13: 4AMB
14: 8MB
15: 16MB
16: 32MB
17: 64MB
18: 128MB
19: 256MB
20: 512MB
21: 1GB
22: 2GB
others: Reserved

Reserved

Reserved 1.

Note: This CSR only exists when FIO is configured.

22.5.31 sattrib(n)

This CSR is used to set region n (0 ~ 7) with base address for Secure S-Mode world to share with Non-Secure S-Mode
world. The base address needs to be 4K Byte aligned.

Table 22.29: sattribn register

Field Bits Description

Reserved SXLEN-1:PA_SIZE Reserved 0.

BPA PA_SIZE-1:12 Base physical address, the address is 4K byte aligned.
Reserved 11:1 Reserved.

ENA 0 Region enable control.

0: Disable (default);
1: Enable.
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22.5.32 sattrim(n)

This CSR is used to set region n (0 ~ 7) with address mask, it is used as a set of sattrib(n).

Table 22.30: sattrimn register

Field Bits Description
Reserved MXLEN-1:PA_SIZE Reserved 0.
MASK PA_SIZE-1:12 The address mask of this region and it is 4K byte aligned. Reset
value is 0.
Reserved 11:0 Reserved 0.
Note:

e Currenlty only 900 v3.2.0 and later versions support this feature, and the number of CSR sets is 8.

* As ENA of sattribn is to enable the region, if at this time value of sattrimn is 0, it means all address space after BPA
is with specific attributes. So user should program sattrimn before sattribn.

* The higher bits of sattrimn should be continuously 1, the left bits should be all 0. Technically the number of 0 means

the size of this region.

* The BPA of sattribn should be integer multiples of the size of this region. A tip to check a new address is in the
region or not: New Address & sattrimn == sattribn & sattrimn? Y, N.

22.5.33 mattrib(n)

This CSR is used to set region n with base address and specific attribute. The base address needs to be 4K Byte aligned.

Table 22.31: mattribn register

Field Bits Description
Reserved MXLEN-1:PA_SIZE Reserved 0.
BPA PA_SIZE-1:12 Base physical address, the address is 4K byte aligned.
Reserved 11:4 Reserved.
SecShare 3 This region is shareable between secure world and non-secure
world or not.
0: Invalid (default);
1: shareable Region.
NOC 2 This region is Noncacheable Region or not.
0: Invalid (default);
1: Noncacheable Region.
Dev 1 This region is Device Region or not.
0: Invalid (default);
1: Device Region.
Note: only entry O can be set to Device Region.
ENA 0 Region enable control.
0: Disable (default);
1: Enable.
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22.5.34 mattrim(n)

This CSR is used to set region n with address mask, it is used as a set of mattrib(n).

Table 22.32: mattrimn register

Field Bits Description
Reserved MXLEN-1:PA_SIZE Reserved 0.
MASK PA_SIZE-1:12 The address mask of this region and it is 4K byte aligned. Reset
value is 0.
Reserved 11:0 Reserved 0.
Note:

900 v3.1.0 and later versions support this feature and it has 5 sets CSRs, only entryQ can be used to be set to Device
Region. And 900 v3.10.0 and later version, the 5 sets can be used to set to Device/Non-Cacheable/Cacheable Region
freely, also the regions can overlap as the prority is Non-Cacheable > Cacheable > Device. 900 v3.11.0 the CSR sets
is configurable and up to 8.

600 v3.0.0 and later versions support this feature and it has 5 sets CSRs, only entry0 can be used to be set to Device
Region. And 900 v3.2.0 and later version, the 5 sets can be used to set to Device/Non-Cacheable/Cacheable Region
freely, also the regions can overlap as the prority is Non-Cacheable > Cacheable > Device. 900 v3.3.0 the CSR sets
is configurable and up to 8.

300 v4.1.0 and later has 2 sets CSR (also called mdevb & mdevm, mnocb & mnocm), entry0 is to set Device Region
only and entry 1 is to set Noncacheable Region Only, so the base CSR has only two fileds (BPA and ENA). And 300
v4.9.0 can support up to 8 CSR sets, all sets can be used to set to Device/Non-Cacheable/Cacheable Region freely,
also the regions can overlap as the prority is Non-Cacheable > Cacheable > Device.

As ENA of mattribn is to enable the region, if at this time value of mattrimn is 0, it means all address space after
BPA is with specific attributes. So user should program mattrimn before mattribn.

The higher bits of mattrimn should be continuously 1, the remaining lower bits should be all 0. Technically the
number (N) of 0 means the size of this region(2*N bytes).

The BPA of mattribn should be integer multiples of the size of this region. A tip to check a new address is in the
region or not: New Address & mattrimn == mattribn & mattrimn? Y, N.

If the Dev & NOC bits are 0 and ENA is 1 of mattribn, then the region is cacheable.

For 900 v3.9.1 or ealier version, the non-cacheable/device region defined by the CSR technially is from the cacheable
region in Core’s RTL Configuration stage, so it should not touch or overlap the IREGION’s or other pre-defined
regions’ address map. Espcially the device region defined by the CSR can’t overlap IREGION or software’s instruc-
tion/data sections, please carefully set the mattribn and mattrimn.

22.5.35 mirgb_info

This CSR is used to show the IREGION configuration.

Table 22.33: mirgb_info register

Field Bits Description
Reserved MXLEN- Reserved 0.
1:PA_SIZE+1
IRG_BASE_ADDR PA_SIZE:10 IREGION Base Address
Reserved 9:6 Reserved 0.
continues on next page
22.5. Customized CSRs supported in Nuclei processor core 136



Nuclei® RISC-V Instruction Set Architecture Specification

Table 22.33 — continued from previous page
Field Bits Description
IREGION_SIZE 5:1 Indicates the size of IREGION and it should be power of 2:
0: Reserved
1KB
2KB
4KB
8KB
: 16KB
: 32KB
: 64KB
: 128KB
: 256KB
10: 512KB
11: 1IMB
12: 2MB
13: 4MB
14: 8MB
15: 16MB
16: 32MB
17: 64MB
18: 128MB
19: 256MB
20: 512MB
21: 1GB
22: 2GB
others: Reserved

Nel

Reserved 0 Reserved 1.

Note:
» This CSR always exists in Nuclei new verison Core IP, please check related Databook.

* Previously there is a CSR named msmpcfg_info using this CSR ID, as SMP configuration information is inside the
IREGION, so msmpcfg_info is discarded.

22.5.36 mecc _lock

This CSR is used to show ECC lock information.

Table 22.34: mecc_lock register

Field Bits Description
Reserved MXLEN-1:1 Reserved 0.
ECC_LOCK 0 To lock ECC related CSRs (mecc_lock, mecc_code [RAMID and

SRAMID excluded], ECC field in milm_ctl, mdlm_ctl, mcache_ctl,
mtlb_ctl), then cannot be modified:

0: not locked

1: locked
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22.5.37 mecc_code

This CSR is used to ECC code injection and ECC error simulation.

Table 22.35: mecc_code register

Field Bits Description

Reserved MXLEN-1:29 Reserved 0.

SRAMIDI[4:0] 28:24 The ID of RAM that has single bit ECC errors. One of these bits is up-
dated when a single ECC error exception occurs, and can be cleared by
software.

SRAMIDI[0]: I-Cache has a single ECC error
SRAMID[1]: D-Cache has a single ECC error
SRAMIDI[2]: Main TLB has a single ECC error
SRAMIDI[3]: ILM has a single ECC error
SRAMIDI[4]: DLM has a single ECC error

Reserved 23:21 Reserved 0.
RAMIDI[4:0] 20:16 The ID of RAM that has double bit ECC errors. One of these bits is
updated when a double ECC error exception occurs, and can be cleared
by software.

RAMIDI0]: I-Cache has a doulbe ECC error

RAMID[1]: D-Cache has a double ECC error

RAMIDI2]: Main TLB has a double ECC error

RAMIDI3]: ILM has a double ECC error

RAMIDI[4]: DLM has a double ECC error

Reserved [15:7] or [15:8] or | Reserved 0.
[15:9]
CODE [6:0] or [7:0] or | ECC code for injection:
[8:0] Max(TLB Width, Data Bus Width) > 64,

the width of CODE is 9.

Max(TLB Width, Data Bus Width) > 32;
the width of CODE is 8.

Max(TLB Width, Data Bus Width) <= 32;
the width of CODE is 7.

22.5.38 mecc_ctrl

This CSR is only for NA Class Core (just like NA900).

Table 22.36: mecc_ctrl register

Field Bits Description
Reserved MXLEN-1:10 Reserved 0.
DC_CPBK_MSK 9 Write 1 to disable aggregate DCache CPBK ECC fatal error to

safety_error output.

Reset value is 1.

DC_CCM_MSK 8 Write 1 to disable aggregate DCache CCM ECC fatal error to safety_error
output.

Reset value is 1.

IC_CCM_MSK 7 Write 1 to disable aggregate ICache CCM ECC fatal error to safety_error
output.

Reset value is 1.

DLM_EXT MSK | 6 Write 1 to disable aggregate DLM external access ECC fatal error to
safety_error output.

Reset value is 1.

continues on next page
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Table 22.36 — continued from previous page

Field

Bits

Description

ILM_EXT_MSK

Write 1 to disable aggregate ILM external access ECC fatal error to
safety_error output.
Reset value is 1.

DC_ACC_MSK

Write 1 to disable aggregate DCache access ECC fatal error to
safety_error output.
Reset value is 1.

IC_FCH_MSK

Write 1 to disable aggregate ICache fetch ECC fatal error to safety_error
output.
Reset value is 1.

DLM_ACC_MSK

Write 1 to disable aggregate DLM access ECC fatal error to safety_error
output.
Reset value is 1.

ILM_ACC_MSK

Write 1 to disable aggregate ILM load/store access ECC fatal error to
safety_error output.
Reset value is 1.

ILM_FCH_MSK

Write 1 to disable aggregate ILM fetch ECC fatal error to safety_error
output.
Reset value is 1.

22.5.39 mecc_status

This CSR is for ECC status and control.

Table 22.37: mecc_status register

Field

Bits

Description

Reserved

MXLEN-1:10

Reserved 0.

DC_CPBK_ERR

9

DCache CPBK ECC fatal error has occurred. Write 0 to clear, write 1 to
set and generate a pulse to corresponding error output.
Reset value is 0.

DC_CCM_ERR

DCache CCM ECC fatal error has occurred. Write O to clear, write 1 to
set and generate a pulse to corresponding error output.
Reset value is 0.

IC_CCM_ERR

ICache CCM ECC fatal error has occurred. Write O to clear, write 1 to
set and generate a pulse to corresponding error output.
Reset value is 0.

DLM_EXT_ERR

DLM external access ECC fatal error has occurred. Write O to clear, write
1 to set and generate a pulse to corresponding error output.
Reset value is 0.

ILM_EXT_ERR

ILM external access ECC fatal error has occurred. Write O to clear, write
1 to set and generate a pulse to corresponding error output.
Reset value is 0.

DC_ACC_ERR

DCache access ECC fatal error has occurred. Write O to clear, write 1 to
set and generate a pulse to corresponding error output.
Reset value is 0.

IC_FCH_ERR

ICache fetch ECC fatal error has occurred. Write O to clear, write 1 to set
and generate a pulse to corresponding error output.
Reset value is 0.

DLM_ACC_ERR

DLM access ECC fatal error has occurred. Write O to clear, write 1 to set
and generate a pulse to corresponding error output.
Reset value is 0.

ILM_ACC_ERR

ILM load/store access ECC fatal error has occurred. Write O to clear,
write 1 to set and generate a pulse to corresponding error output.
Reset value is 0.

ILM_FCH_ERR

ILM fetch ECC fatal error has occurred. Write O to clear, write 1 to set
and generate a pulse to corresponding error output.
Reset value is 0.

22.5. Customized CSRs supported in Nuclei processor core 139




Nuclei® RISC-V Instruction Set Architecture Specification

22.5.40 mmacro_dev_en

This CSR is used to disable or enable each Device Region in RTL Configuration Stage.

Table 22.38: mmacro_dev_en register

Field

Bits

Description

Reserved

MXLEN-1:8

Reserved 0

entry7_en

7

Controls to enable for Dev Region entry7 .
0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry7, this field is tied to O

entry6_en

Controls to enable for Dev Region entry6 .
0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry®6, this field is tied to 0

entry5_en

Controls to enable for Dev Region entryS5 .
0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry5, this field is tied to 0

entry4_en

Controls to enable for Dev Region entry4 .
0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry4, this field is tied to 0

entry3_en

Controls to enable for Dev Region entry3 .
0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry3, this field is tied to O

entry2_en

Controls to enable for Dev Region entry?2 .
0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry2, this field is tied to O

entryl_en

Controls to enable for Dev Region entryl .
0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry1, this field is tied to O

entry0_en

Controls to enable for Dev Region entry0 .
0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry0, this field is tied to O

22.5.41 mmacro_nhoc_en

This CSR is used to disable or enable each Non-Cacheable Region in RTL Configuration Stage.

Table 22.39: mmacro_noc_en register

Field

Bits

Description

Reserved

MXLEN-1:8

Reserved 0

entry7_en

7

Controls to enable for Non-Cacheable Region entry7 .
0: Disable this entry
1: Enable this entry (Default)

Note: When there is no entry?7, this field is tied to O

entry6_en

Controls to enable for Non-Cacheable Region entry6 .
0: Disable this entry
1: Enable this entry (Default)

Note: When there is no entry®6, this field is tied to 0

continues on next page
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Table 22.39 — continued from previous page

Field

Bits

Description

entry5_en

5

Controls to enable for Non-Cacheable Region entry5 .

0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry5, this field is tied to 0

entry4_en

Controls to enable for Non-Cacheable Region entry4 .

0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry4, this field is tied to 0

entry3_en

Controls to enable for Non-Cacheable Region entry3 .

0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry3, this field is tied to O

entry2_en

Controls to enable for Non-Cacheable Region entry?2 .

0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry2, this field is tied to 0

entryl_en

Controls to enable for Non-Cacheable Region entryl .

0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry1, this field is tied to O

entry0_en

Controls to enable for Non-Cacheable Region entry0 .

0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry0, this field is tied to O

22.5.42 mmacro_ca_en

This CSR is used to disable or enable each Cacheable Region in RTL Configuration Stage.

Table 22.40: mmacro_ca_en register

Field

Bits

Description

Reserved

MXLEN-1:8

Reserved 0

entry7_en

7

Controls to enable for Cacheable Region entry7 .
0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry?7, this field is tied to O

entry6_en

Controls to enable for Cacheable Region entry6 .
0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry®6, this field is tied to 0

entry5_en

Controls to enable for Cacheable Region entry5 .
0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry5, this field is tied to O

entry4_en

Controls to enable for Cacheable Region entry4 .
0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry4, this field is tied to 0

entry3_en

Controls to enable for Cacheable Region entry3 .
0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry3, this field is tied to O

entry2_en

Controls to enable for Cacheable Region entry2 .
0: Disable this entry
1: Enable this entry (Default)
Note: When there is no entry2, this field is tied to O

continues on next page
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Table 22.40 — continued from previous page

Field Bits Description
entryl_en 1 Controls to enable for Cacheable Region entryl .

0: Disable this entry

1: Enable this entry (Default)
Note: When there is no entry1, this field is tied to 0
entry0_en 0 Controls to enable for Cacheable Region entry( .

0: Disable this entry

1: Enable this entry (Default)
Note: When there is no entry0, this field is tied to O

22.5.43 mtlb_ctl

This CSR is used to control Main TLB related features.

Table 22.41: mtlb_ctl register

Field Bits Description
Reserved MXLEN-1:8 | Reserved O
NAPOT_EN 7 Napot page enable:
0: Disable
1: Enable
TLB_ECC_CHK_EN 6 Controls to check the ECC when core access to MTLB.

0: Disable to check the ECC codes (Default)
1: Enable to check the ECC codes
Note: When MMU or ECC is not configured, this field is tied

to0

Reserved 5:4 Reserved.

TLB_DRAM_ECC_INJ_EN 3 Controls to inject the ECC Code in CSR mecc_code to MTLB
data rams. This bit can be turned on for injecting ECC errors
to test the ECC handler.

0: Disable to inject the ECC codes (Default)

1: Enable to inject the ECC codes
Note: When MMU or ECC is not configured, this field is tied
to 0.
TLB_TRAM_ECC_INJ_EN 2 Controls to inject the ECC Code in CSR mecc_code to MTLB
tag rams. This bit can be turned on for injecting ECC errors
to test the ECC handler.

0: Disable to inject the ECC codes (Default)

1: Enable to inject the ECC codes
Note: When MMU or ECC is not configured, this field is tied
to 0.
TLB_ECC_EXCP_EN 1 MTLB double bit ECC exception enable control.

0: Disable double bit ECC exception

1: Enable double bit ECC exception
Note: When MMU or ECC is not configured, this field is tied
to0
TLB_ECC_EN 0 MTLB ECC enable control.

0: Disable ECC

1: Enable ECC (default)
Note: When MMU or ECC is not configured, this field is tied
to 0.
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22.5.44 mfpi6mode

This CSR is used to set 16 bit floating precision mode.

Table 22.42: mfpl6mode register

Field Bits Description
Reserved MXLEN-1:1 Reserved 0.
fplémode 0 16 bit float precision mode:

0: normal mode(IEEE-2008 half precision), default value.
1: bfloat 16 mode.

22.5.45 shartid

Nuclei UX900 v2.8.0 or later core implments CSR shartid, the format and features of CSR shartid is same as mhartid, it
is convenient for S-mode software to distinguish each hart in a SMP cluster.
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ECC Introduction

Nuclei processor core can optionally support the ECC protection on ILM, DLM, I-Cache, D-Cache , TLB and Cluster
Cache, if configured. This chapter introduces the ECC on ILM, DLM, I-Cache, D-Cache, TLB. For ECC on Cluster
Cache, please refer to SMP and Cluster Cache (page 333).

23.1 Nuclei ECC mechanism

SECDED: Single Error Correction, Double Error Detection

For RV32/64, ECC protection granularity:
DLM and D-Cache Data-Ram: 32-bit;

ILM and I-Cache Data-Ram: 64-bit;
CLM and Cluster Cache Data-RAM: 64-bit;
I/D-Cache Tag-Ram ,TLB, Cluster Cache other RAMs: their Actual Size;

Note: For ILM, DLM and CLM, if user wants to initialize them before using, please refer the granularity.

» ECC update policy:
— Full Write: 32/64-bit data/instruction and corresponding ECC code will be updated simultaneously;
— Partial Write: Read-Modify-Write sequency will be triggered when 8/16-bit data write operation;

* ECC control policy:

— ECC_EN, ECC_Exception_EN and ECC_Check_EN can be enable/disable separately on ILM, DLM, I-Cache,
D-Cache, TLB and Cluster Cache;

User should turn on ECC_EN firstly then turn on ECC_Exception or ECC_Check for a target module;
ECC_EN of all related module is default on while ECC_Check_EN is default off;

For I-Cache/D-Cache/Cluster Cache with ECC feature, the ECC_EN should be 1 before the related Cache_ EN
is 1 and not changed while the cache is on, or the result is undefined.

1-bit ECC error will be corrected automatically by hardware and will not trigger ECC exception when ECC is
enabled;

2-bit ECC error will trigger ECC exception only when both ECC is enabled and ECC Exception is also enabled,
or 2-bit ECC error exception will not be triggered;

» 2-bit ECC error exception cases:

— Pipeline: IFU instruction fetch will report precise exception, LSU load/store data will report imprecise excep-
tion;
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— [-Cache CCM (Control and Maintenance): for by-ADDR operation, store access fault will be reported,
mecc_code.RAMID will be set to 1, mtval/stval will be cleared to 0; for INV_ALL operation, I-Cache will be
invalidated directly without checking ECC error;

— D-Cache CCM (Control and Maintenance): for by-ADDR operation, store access fault will be reported,
mecc_code.RAMID will be set to 1 (RAMID.tlb will be set if in VA-PA translation stage, or RAMID.dcache
will be set if in D-Cache accessing stage), mtval/stval will be cleared to 0; the by-ALL operation will be abort
if any cacheline has 2-bit ECC error, store access fault will be reported and mecc_code.RAMID.dcache will
be set to 1, mtval/stval will be cleared to O;

D-Cache eviction (cpbk): imprecise exception will be reported, mecc_code.RAMID.dcache will be set to 1;

Slave Port: 2-bit ECC error will be reported as Bus Error;
Debug SBA: 2-bit ECC error will be reported as Bus Error;

SFENCE: for by-ADDR operation, store access fault will be reported, mecc_code.RAMID.tlb will be set to 1
and mtval/stval will be cleared to 0; for by-ALL operation, TLB will be invalided directly without checking
ECC error;

mecc_code. RAMID will set to 1 when 2-bit ECC error occurs on ILM/DLM/I-Cache/D-Cache/TLB; However
RAMID is set to 1 does not indicate that ECC exception will be triggered, such as, 2-bit ECC error occurs in
Slave Port or Debug SBA, or an instruction fetching has 2-bit ECC error but be flushed later in pipeline;

2-bit ECC error will be indicated in mecc_code.RAMID but not in mdcause, and ECC exception will be re-
ported as access fault but not page fault, so the access fault handler needs to check the mecc_code.RAMID for
2-bit ECC error;

2-bit ECC error signals will be list as output in the CORE top module for SoC integration;

ECC exception will be reported if 2-bit ECC error occurs on any way of I-Cache/D-Cache/TLB when in Tag
Ram comparing stage, even there is a hit way and this hit way has no 2-bit ECC error;

Access fault will be reported other than page fault when TLB has 2-bit ECC error, to make this ECC exception
handled in M-mode;

¢ 1-bit ECC error cases:

— 1-bit ECC error will be corrected automatically by hardware without triggering exception, and the corrected
data will be also updated into the memory (1-bit ECC Scrubbing);

— mecc_code.SRAMID will be set to 1 when 1-bit ECC error occurs on ILM/DLM/I-Cache/D-Cache/TLB;
— 1-bit ECC error signals will be list as output in the CORE top module for SoC integration;
* ECC error injection:

— mecc_code.Code can be selected to update the ILM (ILM is accessible by LSU) and DLM by STORE instruc-
tion, without using the ECC code generated by hardware;

— mecc_code.Code can be selected to update the I-Cache/D-Cache Tag Ram or Data Ram by Linefill when cache
miss, without using the ECC code generated by hardware;

— mecc_code.Code can be selected to update the TLB Tag Ram or Data Ram by Refill when TLB miss, without
using the ECC code generated by hardware;

e ECC lock:

— ECC related CSRs cannot be modified after ECC is locked unless reset, for security;
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23.2 Nuclei ECC CSRs

ECC CSRs are all Nuclei customized ones, see below:

Table 23.1: Nuclei ECC CSRs

CSR ADDR R/W Name Description

0xFCO MRO micfg_info ILM/I-Cache configuration info
0xFC1 MRO mdcfg_info DLM/D-Cache configuration info
0xFC2 MRO mcfg_info Core configuration info

0xFC3 MRO mtlbcfg_info TLB configuration info

0x7C0O MRW milm_ctl ILM control

0x7C1 MRW mdlm_ctl DLM control

0x7C2 MRW mecc_code ECC code injection

0x7DD MRW mtlb_ctl TLB control

0x7DE MRW mecc_lock ECC lock

0xbc0 MRW mecc_ctrl ECC Control Register

Oxbc4 MRW mecc_satus ECC Status and Control Register
0x7CA MRW mcache_ctl Cache control

23.2. Nuclei ECC CSRs
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Performance Monitor Introduction

Nuclei processor core supports to configure Performance Monitor(called PMU) which is to count on various events for
performance profiling. And our implementation of Performance Monitor exactly follows RISC-V Privilege Spec, users
also can refer that for details.

PMU implement the RISC-V Sscofpmf extension.

Note: The width of PMU counter is 32bit.

24.1 Performance Monitor CSRs

Table 24.1: Performance Monitor CSRs list

Type CSR ADDR RW Name Description

CSR 0xB03 MRW mhpmcounter3 Machine performance monitor counter 3.
0xB04 MRW mhpmcounter4 Machine performance monitor counter 4.
0xBO05 MRW mhpmcounter5 Machine performance monitor counter 5.
0xB06 MRW mhpmcounter6 Machine performance monitor counter 6.
0xB07 MRW mhpmcounter7 Machine performance monitor counter 7 (tie

0 in our implementation).

0xBI1F MRW mhpmcounter31 Machine performance monitor counter 31 (tie

0 in our implementation).

0xB8&3 MRW mhpmcounter3h Upper 32 bits of mhpmcounter 3 (tie 0 in our
implementation), RV32 only.

0xB84 MRW mhpmcounter4h Upper 32 bits of mhpmcounter 4 (tie 0 in our

implementation), RV32 only.

0xB9F MRW mhpmcounter31h Upper 32 bits of mhpmcounter 31 (tie 0 in our

implementation), RV32 only.

0x320 MRW mcountinhibit Machine counter-inhibit register.

0x323 MRW mhpmevent3 Machine performance monitor event selector
3.

0x324 MRW mhpmevent4 Machine performance monitor event selector
4.

0x325 MRW mhpmevent5 Machine performance monitor event selector
5.

0x326 MRW mhpmevent6 Machine performance monitor event selector
6.

0x327 MRW mhpmevent7 Machine performance monitor event selector

7 (tie 0 in our implementation).
continues on next page
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Table 24.1 — continued from previous page

Type CSR ADDR RW Name Description

0x33F MRW mhpmevent31 Machine performance monitor event selector
31 (tie 0 in our implementation).

0x723 MRW mhpmevent3h Upper 32 bits of mhpmevent3, RV32 only.

0x724 MRW mhpmevent4h Upper 32 bits of mhpmevent4, RV32 only.

0x725 MRW mhpmeventSh Upper 32 bits of mhpmevent5, RV32 only.

0x726 MRW mhpmevent6 Upper 32 bits of mhpmevent6, RV32 only.

0x727 MRW mhpmevent7h Upper 32 bits of mhpmevent7, RV32 only, tie
0.

0x73f MRW mhpmevent31h Upper 32 bits of mhpmevent31, RV32 only,
tie 0.

0xCO03 URO hpmcounter3 Supervisor/User mode performance monitor
counter 3.

0xC04 URO hpmcounter4 Supervisor/User mode performance monitor
counter 4.

0xC1F URO hpmcounter31 Supervisor/User mode performance monitor
counter 31.

0xC83 URO hpmcounter3h Upper 32 bits of hpmcounter 3, RV32 only.

0xC84 URO hpmcounter4h Upper 32 bits of hpmcounter 4, RV32 only.

0xCI9F URO hpmcounter31h Upper 32 bits of hpmcounter 31, RV32 only.

24.1.1 mhpmcounterx

This CSR is used to record specific micro-architecture event number, Note that the width is different for RV32 and RV64.

Table 24.2: mhpmcounterx

Field Name Bits RW Reset Value Description
Reserved MXLEN-1:32 | RW 0 Tie 0 for RV32, RV64 only.
mhpmcounterx 31:0 RW 0 Machine performance monitor counter x.
3=<x <=6
Table 24.3: mhpmcounterx
Field Name Bits RW Reset Value Description
Reserved MXLEN-1:32 | R 0 Tie 0, RV64 only.
mhpmcounterx 31:0 RW 0 Tie 0.
7=<x <=31

24.1.2 mhpmcounterhx

This CSR is used to record specific micro-architecture event upper 32 bit number, it is only for RV32.

Table 24.4: mhpmcounterhx

Field Name Bits RW Reset Value Description
mhpmcounterhx MXLEN-1:0 R 0 Tie 0, RV32 only.
0=< x <=31
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24.1.3 mcountinhibit

The counter-inhibit register mcountinhibit is a XLEN-bit WARL register that controls which of the hardware performance-
monitoring counters increment. The settings in this register only control whether the counters increment; Their accessi-
bility is not affected by the setting of this register.

When the CY, IR, or HPMn bit in the mcountinhibit register is clear, the cycle, instret, or hpmcountern register increments
as usual. When the CY, IR, or HPMn bit is set, the corresponding counter does not increment.

Table 24.5: mcountinhibit

Field Name Bits RW Reset Description

Value
Reserved MXLEN-1:7 R 0 -
HPM6 6 RW 0 If set, stop increase performance monitor counter 6.
HPMS 5 RW 0 If set, stop increase performance monitor counter 5.
HPM4 4 RwW 0 If set, stop increase performance monitor counter 4.
HPM3 3 RW 0 If set, stop increase performance monitor counter 3.
IR 2 RW 0 If set, stop increase instret counter.
Reserved 1 R 0 -
CY 0 RW 0 If set, stop increase cycle counter.

24.1.4 mhpmeventx

The event selector CSRs, mhpmevent3 - mhpmevent31, are XLEN-bit WARL registers that control which event causes the
corresponding counter to increment.

Table 24.6: mhpmevent 3-6

Field Name Bits RW Reset Description
Value

OF 63 RW 0 Overflow status and interrupt disable bit that is set
when counter overflows. RV64 Only.

MINH 62 RW 0 If set, the counting of events in M-mode is inhibited.
RV64 Only.

SINH 61 RW 0 If set, the counting of events in S/HS-mode is inhib-
ited. RV64 Only.

UINH 60 RW 0 If set, the counting of events in U-mode is inhibited.
RV64 Only.

Reserved 59:32 R 0 RV64 Only.

Reserved 31:9 R 0 -

event_idx 8:4 RW 0 Detailed event selector.

For instruction commit events please see Event
Selection Value for Instruction Commit Events
(page 150) for more details. For memory access
events please see Event Selection Value for Memory
Access Events (page 150) for more details.
event_sel 3:0 RW 0 0: Select the instruction commit events, such as
load, store, bjp ect. See Event Selection Value for
Instruction Commit Events (page 150) for more de-
tails.

1: Select the memory access events, such as icache
miss, dcache miss ect. See Event Selection Value for
Memory Access Events (page 150) for more details.

Note: If XLEN is 32, the high 32bit of hpmevent3-6 are in hpmeventh3-6.
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Table 24.7: mhpmevent7-31

Field Name Bits RW Reset Description
Value
Reserved MXLEN-1:0 R 0 -
Table 24.8: Event Selection Value for Instruction Commit Events
event_idx Event Name

(mhpeventx[3:0]==0)

1 Cycle count
2 Retired instruction count
3 Integer load instruction (includes LR)
4 Integer store instruction (includes SC)
5 Atomic memory operation (do not include LR and SC)
6 System instruction
7 Integer computational instruction(excluding multiplication/division/remainder)
8 Conditional branch
9 Taken conditional branch
10 JAL instruction
11 JALR instruction
12 Return instruction
13 Control transfer instruction (CBR+JAL+JALR)
14 fence instruction(Not include fence.i)
15 Integer multiplication instruction
16 Integer division/remainder instruction
17 Floating-point load instruction
18 Floating-point store instruction
19 Floating-point addition/subtraction
20 Floating-point multiplication
21 Floating-point fused multiply-add (FMADD, FMSUB, FNMSUB, FNMADD)
22 Floating-point division or square-root
23 Other floating-point instruction
24 Conditional branch prediction fail
25 JAL prediction fail
26 JALR prediction fail
Table 24.9: Event Selection Value for Memory Access Events
event_idx Event Name

(mhpeventx[3:0]==1)

1 Icache miss
2 Dcache miss
3 ITLB miss
4 DTLB miss
5

Main TLB miss
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25.1 Revision History

CCM Mechanism

Rev. Rev. Date Revised Section Revised Content

1.0 2020/4/20 N/A 1.First English version

1.1.0 2021/8/13 1 1.ADD Cluster Cache CCM operations

1.2.0 2021/10/20 1,3,4 1.Update the ccm_suen description, which is different in
Single Core Configuration and Cluster Configuration.

1.3.0 2022/1/6 4 1.Update the ccm_suen description, which is consistent in
Single Core Configuration and Cluster Configuration.

1.4.0 2022/2/11 4 1.Update the ccm_suen description, which clarifies that: a

ccm operation can trig an exception only when sen/uen is
disabled.

2.Update the INVAL_ALL description: D-Cache IN-
VAL_ALL CMD will be upgraded to be WBINVAL_ALL
in U mode if uinvallen is set.

25.2 CCM Mechanism Introduction

CCM (Cache Control and Maintenance) is defined for software to control and maintain the internal L1 I/D-Cache and
external Cluster Cache of the core, software can manage the Cache states flexibly to meet the actual application scenarios.

Note: The CCM behavior is valid only if the target L1 I-Cache or D-Cache is enable, or the result is unpredictable.

25.2.1 Nuclei CCM Implementation
Nuclei CCM mechanism uses specific CSRs to control and maintain the Cache. CCM operations have 3 types: by single
Address, by ALL and Flush pipeline.
For the ‘by single Address’ operation, one complete CCM operation flow is:
» Using CSRW to write CSR ‘ccm_xbeginaddr’, to specify the ADDR of the CCM operation.

e Using CSRW to write CSR ‘ccm_xcommand’, to specify the CMD type of the CCM operation, CMD type will be
listed in details in below chapter.

* CCM operation will be triggered at the next cycle of the CMD CSR write operation.
* For some operations, such as Lock, using CSRR to read CSR ‘ccm_xdata’ to get the result of the CCM operation.

For the ‘by ALL’ operation, one complete CCM operation flow is:
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* Using CSRW to write CSR ‘ccm_xcommand’, to specify the CMD type of the CCM operation, CMD type will be
listed in details in below chapter.

e CCM operation will be triggered at the next cycle of the CMD CSR write operation.

For the ‘Flush pipeline’ operation, in some senarios it is needed after above two operations to make sure latest instructions
or data can be seen by pipeline.

Note: the x in ccm_xbeginaddr, ccm_xcommand and ccm_xdata can be M/S/U mode, each mode will have its own CSRs.

25.2.2 Nuclei CCM CSRs

Nuclei defines extended CSRs for CCM, which are listed in below table, M/S/U mode has its own CSRs, and the permission
of the CCM operations in S/U mode is defined in ‘ccm_suen’.

Table 25.2: Nuclei CCM CSRs List

CSR Addr | R'W Name Description

0x7CB MRW ccm_mbeginaddr Machine Mode CCM operation ADDR

0x7CC MRW ccm_mcommand Machine Mode CCM operation CMD

0x7CD MRW ccm_mdata Machine Mode CCM operation ReadBack DATA
0x7CE MRW ccm_suen Supervisor/User mode CCM Control

0x5CB SRW ccm_sbeginaddr Supervisor Mode CCM operation ADDR

0x5CC SRW ccm_scommand Supervisor Mode CCM operation CMD

0x5CD SRW ccm_sdata Supervisor Mode CCM operation ReadBack DATA
0x4CB URW ccm_ubeginaddr User Mode CCM operation ADDR

0x4CC URW ccm_ucommand User Mode CCM operation CMD

0x4CD URW ccm_udata User Mode CCM operation ReadBack DATA
0x4CF URW ccm_fpipe Flush Pipeline CMD

25.2.2.1 ccm_xbeginaddr
ccm_xbeginaddr is to define the Address of the CCM operation, this Address is treated as VA (Virtual Address), which
will be translated to be PA (Physical Address) by MMU (if configured) in pipeline, before accessing Cache.

Note, this CSR’s content will INCR one cacheline in Byte automatically by HW after each CCM operation.
(ccm_xbeginaddr = ccm_xbeginaddr + One-Cacheline-Bytes)

ccm_xbeginaddr CSR description is listed below:

Table 25.3: ccm_xbeginaddr CSR

Field Name Bits RW Reset Description
Value
beginaddr XLEN-1:0 RW 0 CCM operation ADDR.

25.2.2.2 ccm_xcommand
ccm_xcommand is to define the Command of the CCM operation, after an valid Command is defined, the corresponding

operation will be triggered at the next cycle, till a completion sent from Cache. ccm_xcommand CSR description is listed
below:

Table 25.4: ccm_xcommand CSR

Field Name Bits RW Reset Description
Value
Reserved XLEN-1:5 R 0 Reserved
command 4:0 RW 0 CCM operation command.

Command types list in ccm_command CMD Types (page 153):
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Table 25.5: ccm_command CMD Types

Type Operation Codes Description
I-Cache INVAL 5b’01_000 When I-Cache hit, Unlock and Invalid the specific
operation cacheline in I-Cache;
Ignored when I-Cache miss.
LOCK 5b’01_011 When I-Cache hit, Lock the specific cacheline in
I-Cache;

When I-Cache miss, Refill the specific cacheline
then Lock it in I-Cache. Check ccm_data to know
the Lock succeed or not.

UNLOCK 5b’01_100 When I-Cache hit, Unlock the specific cacheline in
I-Cache;
Ignored when I-Cache miss.
INVAL_ALL 5b’01_101 Unlock and Invalid ALL the cacheline in I-Cache.
D-Cache INVAL 5b’00_000 When cache hit, Unlock and Invalid the specific
operation cacheline;

Ignored when cache miss.

Work on both D-Cache and Cluster Cache, if cluster
smp is enable, it will invalid the specified cacheline
in the cluster.

WB 5b’00_001 When cache hit and Dirty, Flush the specific cache-
line;

When cache miss or hit but not dirty, ignored.
Lock bit is not affected.

Work on both D-Cache and Cluster Cache, if cluster
smp is enable, it will writeback the specified cache-
line in the cluster.

WBINVAL 5b’00_010 When cache hit, Unlock and Flush and Invalid the
specific cacheline;

Ignored when cache miss.

Work on both D-Cache and Cluster Cache, if clus-
ter smp is enable, it will writeback and invalid the
specified cacheline in the cluster.

LOCK 5b’00 011 When cache hit, Lock the specific cacheline;
When cache miss, Refill the specific cacheline then
Lock it. Check ccm_data to know the Lock succeed
or not.

Work on D-Cache only.

UNLOCK 5b’00_100 When cache hit, Unlock the specific cacheline;
Ignored when cache miss.

Work on D-Cache only.

INVAL_ALL 5b’10_111 Unlock and Invalid ALL the cacheline.
Work on D-Cache only.
WB_ALL 5b’00_111 Flush ALL the Valid and Dirty cachelines;

Lock bit is not affected.
Work on D-Cache only.
WBINVAL_ALL 5b’00_110 Unlock and Flush and Invalid ALL the Valid and
Dirty cachelines.
Work on D-Cache only.
Cluster  Cache | Cluster_LOCK 5b’10_011 When Cluster Cache hit, Lock the specific cache-
operation line;
When CLuster Cache miss, Refill the specific
cacheline then Lock it. Check ccm_data to know
the Lock succeed or not. Work on Cluster Cache
only.
Cluster_UNLOCK 5b’10_010 When CLuster Cache hit, Unlock the specific
cacheline;
Ignored when Cluster Cache miss.
Work on Cluster Cache only.

continues on next page
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Table 25.5 — continued from previous page

Type Operation Codes Description
WB_ALL Please refer to the Nuclei ISA Spec for more details
WBINVAL_ALL for the ‘WB_ALL/WBINVAL_ALL CCM opera-
tions on Cluster Cache.

All the above list operations are for M mode. Notes:

ADDR is needed to be specified except for the ‘ALL’ operations.
Cacheline is the one hit by the ADDR, the ADDR can point to the head, middle or end of the cacheline.

S/U mode has the same CMD types as M mode, but for security, D-Cache INVAL_ALL CMD will be upgraded to
be WBINVAL_ALL in U mode if uinvallen is set.

CCM operations can still work on the Disabled Cache.

Higher privileged mode can operate on the lower privileged mode CCM CSRs to trigger the CCM operations; But
‘illegal instruction’ exception will trigger when the lower privileged mode operates on higher privileged mode CCM
CSRs.

Some special cases for I-Cache CCM operations:

L]

Permission checking will be done for those ‘by ADDR’ CCM operations. Permission checking includes: X checking
in Page table if VA-PA translation needed, X checking in PMP, X checking in sSPMP, Device attribute checking and
Non-Cacheable attribute checking. This CCM operation will be ignored if any permission checking fails.

For LOCK operation, Refill will be triggered if Permission checking passes but Miss in I-Cache, LOCK will fail if
Bus Error occurs during Refill and fail info will update into ‘ccm_data’ CSR register. ECC error (if configured) may
occur in Tag Ram when LOCK operation, then LOCK will fail and ECC error info will update into ‘sramid” CSR
register.

Software can access the ‘ccm_data’ CSR register to check the Fail Info details of the LOCK operation, ECC fail info
needs to check the ‘sramid’ CSR register.

Table 25.6: I-Cache Lock Operation Fail Info

Type Code Fail Info
I-Cache CCM 0 Lock Succeed
Operation
1 Exceed the Upper entry Num of Lockable way
(N-Way I-Cache, Lockable is N-1)
2 PMP/sPMP/Page-Table X permission check fail, or is Device/Non-Cacheable
attribute
3 Refill has Bus Error
4 reserved

L]

No Permission checking will be done on ‘INVAL_ALL’, the whole I-Cache will be invalidated directly.

Some special cases for D-Cache and Cluster Cache CCM operations:

* Permission checking will be done for those ‘by ADDR’ CCM operations. Permission checking includes (except

for LOCK/UNLOCK/CLuster_LOCK/Cluster_UNLOCK): R checking in Page table if VA-PA translation needed,
W checking in PMP, W checking in sSPMP, Device attribute checking and Non-Cacheable attribute checking. This
CCM operation will be ignored if any permission checking fails or permission checking pass but miss in Cache.

For LOCK/UNLOCK operation, permission checking will include: R checking in Page table if VA-PA translation
needed, R checking in PMP, R checking in sSPMP, Device attribute checking and Non-Cacheable attribute checking.
This CCM operation will be ignored if any permission checking fails.

For Cluster_LOCK/Cluster_UNLOCK operation, permission checking will include: R checking in Page table if
VA-PA translation needed, X or R checking in PMP, X or R checking in sSPMP, Device attribute checking and Non-
Cacheable attribute checking. This CCM operation will be ignored if any permission checking fails.

For LOCK/Cluster_LOCK operation, Refill will be triggered if Permission checking passes but Miss in D-
Cache/Cluster Cache, LOCK will fail if Bus Error occurs during Refill and fail info will update into ‘ccm_data’
CSR register. ECC error (if configured) may occur in Tag Ram when LOCK/Cluster_LLOCK operation, then
LOCK/Cluster_LOCK will fail and fail info will update into ‘sramid’ CSR register for LOCK operation or
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‘CC_FATAL_CNT register for Cluster_LOCK operation but not ‘sramid’ CSR register.

» Software can access the ‘ccm_data’ CSR register to check the Fail Info details of the LOCK/Cluster_LOCK opera-

tion.
Table 25.7: D-Cache Lock Operation Fail Info
Type Code Fail Info
D-Cache CCM 0 Lock Succeed
Operation
1 Exceed the Upper entry Num of Lockable way
(N-Way D-Cache, Lockable is N-1)
2 PMP/sPMP/Page-Table X permission check fail, or is Device/Non-Cacheable
attribute
3 Refill has Bus Error
4~17 Reserved

e For ‘INVAL_ALL operation, PMP/sPMP W checking will be done on each cacheline when ‘ALL’ operation is
enabled under the corresponding mode, if failed, ‘INV’ will be upgraded to be “‘WB+INV’ operation. Note: the
“INVAL_ALL” in U mode will be automatically upgraded to be “WBINVAL_ALL” if uinvallen is set.

* No permission checking will be done on other ‘by ALL’ CCM operations if ‘ALL’ operation is enabled under the
corresponding mode.

* WB/Flush will be triggered during some of the CCM operations, if Bus error occurs during WB/Flush, error info
will be recorded and report to Core asynchronously; (for ‘by ALL’ operations, the cacheline in which bus error
occurs will be skipped)

25.2.2.3 ccm_xdata

ccm_xdata is to record the result of the LOCK operation.

For LOCK operation, 0 in ccm_xdata indicates succeed, non-zero value indicates failed. I-Cache Lock fail info can refer
to I-Cache Lock Operation Fail Info (page 154),D-Cache and Cluster Cache Lock fail info can refer to D-Cache Lock
Operation Fail Info (page 155).

Table 25.8: ccm_xdata CSR

Field Name Bits RW Reset Description
Value

Reserved XLEN-1:3 R 0 -

data 2:0 RwW 0 CCM DATA.

25.2.2.4 ccm_suen

ccm_suen is to control CCM operations in S/U mode, CCM operations can be permitted only when corresponding bits
in ccm_sen/ccm_uen is 1, or ‘illegal instruction’ exception will be reported. In addition, a specified CCM operation like
WB_ALL/INVAL_ALL/WBINVAL_ALL/INVAL/WBINVAL in S/U mode can be enabled only when its corresponding
enable bit is set, or this CCM operation will be ignored. This CSR will only exist in M mode when S/U mode is configured.

Table 25.9: ccm_suen CSR

Field Name Bits RW Reset Description
Value
Reserved XLEN-1:26 R 0 -
swballen 25 RwW 0 S-mode WB_ALL enable
uwballen 24 RW 0 U-mode WB_ALL enable
Reserved 23:18 R 0
sinvallen 17 RW 0 S-mode INVAL_ALL/WBINVAL_ALL enable
uinvallen 16 RW 0 U-mode INVAL_ALL/WBINVAL_ALL enable
Reserved 15:10 R 0

continues on next page
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Table 25.9 — continued from previous page

Field Name Bits RW Reset Description

Value
sinven 9 RwW 0 S-mode INVAL/WBINVAL enable
uinven 8 RW 0 U-mode INVAL/WBINVAL enable
Reserved 7:2 R 0
sen 1 RwW 0 S-mode CCM operations enable
uen 0 RwW 0 U-mode CCM operations enable

25.2.2.5 ccm_fpipe

ccm_fpipe is to flush the pipeline after CCM operations on Cache, to ensure the latest instructions or data can be seen by

pipeline.

ccm_fpipe CSR content in ccm_fpipe content (page 156).

Table 25.10: ccm_fpipe content

Field Name Bits RW Reset Description
Value
fpipe XLEN-1:0 RW 0 CCM Flush Pipeline, Wirte any value to this CSR

will trigger pipeline flush, Read this CSR will re-
turn 0.

25.2. CCM Mechanism Introduction
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Packed-SIMD DSP Introduction

Nuclei processor core can optionally support the DSP features with P extension (Packed-SIMD) instructions.

26.1 Revision History

Rev. Revision Date Revised Section Revised Content

1.5.0 2020/1/20 N/A 1.First version as the full English

2.0.0 2020/4/30 1 1.RISC-V P extension update from v0.5 to v0.5.4

2.5.0 2021/10/29 2 1.Add Nuclei N2 N3 RISC-V P extension instruction

2.5.5 2021/11/01 3 1.Implement EXPD instruction in RV64

2.6.0 2021/12/20 3 1.Update N3’s 3 instructions (signed to unsigned)

2.7.0 2023/02/18 9,10 1.Add more N2’s instruction (54, Chapter 9.11 ~ 9.64)
2.Add more N3’s instruction (14, Chapter 10.37 ~ 10.50)

26.2 Overview of Nuclei SIMD DSP Instructions

The Packed-SIMD DSP of Nuclei Processor Core basically follows the RISC-V “P” Extension Proposal (Version 0.5.4).

Besides RISC-V P Extension, based on Nuclei’s customer requests and our DSP domain experiences, Nuclei DSP imple-
ments one type of “expansion” default instruction and three configurable extensions.

* One type of “expansion” instruction is to expand a specific byte to a XLEN GPR.

» Three configurable extensions are called N1, N2 and N3. They can only apply to RV32 architecture. The primary
advantage of the three subsets is to double the SIMD computation’s parallelism as they can use paired 32-bit registers.

Brief introduction is as follows:

— NI can use register-pairs to do some multiply and add operations. The operand of N1 additional instructions

is 8 bit or 16 bit.

— N2 can use register-pairs to do some multiply operations. The operand of N2 is 32 bit.

— N3 can use register-pairs to do some multiply-add operations.

For the details of the Nuclei added SIMD DSP instructions, please refer to “Appendix” of this document for more details.

Note:

* The default “expansion” instruction applies to both RV32 and RV64 architectures. In other words, if customer
configures DSP module for the core, it always implements the instructions.

* N1, N2, N3 only apply to RV32 architecture. So only N series core can support them. And N2 depends on N1.
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¢ Please refer the Databook in the deliver package to know what extensions are supported, or please contact Nuclei
Support.

* About the definition of “register-pairs”, please refer the RISC-V P Extension Proposal (Version 0.5.4).

26.3 Introduction of NMSIS

26.3.1 Background

Many micro-controller-based applications can benefit from efficient digital signal processing libraries. In order to quickly
and easily handle a variety of complex DSP functions, Nuclei have established a NMSIS DSP library, which is also com-
patible to ARM open-source CMSIS DSP library, helping users to handle complex DSP calculations on the processor more
conveniently.

For more details of the NMSIS, please refer to its online doc from http://doc.nucleisys.com/nmsis.

26.3.2 DSP Library Functions

In NMSIS DSP library, it includes many practical DSP functions. The library is divided into a number of functions each
covering a specific category:

» Basic Math Function: Support basic math function, e.g. add, sub, mul, div, etc.

¢ Fast Math Function: Mainly include sin, cos, sqrt functions, etc.

* Complex Math Function: Mainly include vector calculation and module operation.

¢ Filter Function: IIR, FIR, LMS, etc.

* Matrix Function: Support matrix calculation.

¢ Transform Function: Include cfft/ciff, rfft/rifft calculation, etc.

* Motor Control Function: Mainly include PID control functions.

* Statistics Function: Include average, RMS functions.

* Support Function: Include data-copy, transformation between integers and floating-point.
* Interpolation Function: Support interpolation calculation.

The library has separate functions for operating on 8-bit integer, 16-bit integer, 32-bit integer and 32-bit floating-point
values. All the library functions are declared in the file riscv_math.h. The functions end with _f32 operating on 32-bit
floating-point values. The functions end with _q7, _ql5, _q31 operating on integers.

For more details of the library functions, please refer to NMSIS online doc from http://doc.nucleisys.com/nmsis.

26.3.3 DSP Intrinsic Functions

When doing calculation, users can directly call the functions in the NMSIS DSP library to perform efficiently and quickly.
When the required functions are not found in the library, users can also directly call the DSP intrinsic functions to meet
the requirements and handle related data processing.

For more details of the intrinsic functions, please refer to NMSIS online doc from http://doc.nucleisys.com/nmsis.
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26.4 Example of DSP Program

This section will use a simple example to introduce how to set up a project, and operate by calling the NMSIS DSP library.

The example is named as “demo_dsp”, in this project, the program want to calculate the average value of the arrays for
different data types. As a demo, the program will use the native reference C program and call the DSP library function to
calculate the result respectively, and show their results and performance cycles.

Please refer to “application/baremetal/demo_dsp” directory from Nuclei-SDK (https://github.com/Nuclei-Software/
nuclei-sdk) for more details about the “demo_dsp” program.

The code structure of this program and the flow of this project are described in detail below.

* demo_dsp.c is the program source code file. The detail of the code is explained below:

#define BENCH_INIT() enter_cycle=__get_rv_cycle(); \
printf("CSV, BENCH START, %1lu\n", enter_cycle);

#define BENCH_START(func) start_cycle=__get_rv_cycle();

#define BENCH_END(func) end_cycle=__get_rv_cycle(); \
cycle=end_cycle-start_cycle; \
printf("CSV, %s, %llu\n", #func, cycle);

#define BENCH_FINISH() exit_cycle=__get_rv_cycle(); \
cycle=exit_cycle-enter_cycle; \

printf("CSV, BENCH END, %1lu\n", cycle);

// Defined a comparison function which compares “the result calculated by DSP library”
// with “the result of the reference native C Code”.

// Use BENCH_START and BENCH_END macro to record the clock cycles required to execute
// the program, and print the final result.

// In the DSP library, riscv_mean_f32, riscv_mean_q7, riscv_mean_ql5, and riscv_mean_q31

// are the averaging functions for 32-bit floating point, 8-bit, 16-bit, and 32-bit

// integers arrays respectively.

// At the same time, use the C Code program to perform the averaging operation, and also

// use BENCH_START and BENCH_END to record the clock cycles required to execute

// the program, and print the result.

// define f32_mean_compare function

void f32_mean_compare()

{
BENCH_START (riscv_mean_£32);
riscv_mean_f£32(£f32_array, ARRAY_SIZE, &f32_out);
BENCH_END (riscv_mean_£32);

BENCH_START (ref_mean_£32);
ref_mean_f£f32(£f32_array, ARRAY_SIZE, &f32_out_ref);

BENCH_END (ref_mean_f£32);

printf("riscv vs ref: %f, %f\n", £32_out, £f32_out_ref);

(continues on next page)
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(continued from previous page)

}

void g7_mean_compare()

{

}

BENCH_START (riscv_mean_q7);
riscv_mean_q7(q7_array, ARRAY_SIZE, &q7_out);
BENCH_END(riscv_mean_q7) ;

BENCH_START (ref_mean_q7) ;

ref_mean_q7(q7_array, ARRAY_SIZE, &gq7_out_ref);
BENCH_END (ref_mean_q7) ;

printf("riscv vs ref: %d, %d\n", q7_out, gq7_out_ref);

void gql15_mean_compare()

{

}

BENCH_START (riscv_mean_ql5);
riscv_mean_ql15(ql5_array, ARRAY_SIZE, &ql5_out);
BENCH_END(riscv_mean_ql15);

BENCH_START (ref_mean_q15) ;

ref_mean_ql15(ql5_array, ARRAY_SIZE, &ql5_out_ref);
BENCH_END (ref_mean_q15);

printf("riscv vs ref: %d, %d\n", ql5_out, gql5_out_ref);

void g31_mean_compare()

{

BENCH_START (riscv_mean_q31);
riscv_mean_q31(q31_array, ARRAY_SIZE, &g31_out);
BENCH_END(riscv_mean_q31);

BENCH_START (ref_mean_q31);

ref_mean_q31(q31_array, ARRAY_SIZE, &q31_out_ref);

BENCH_END (ref_mean_q31);

(continues on next page)
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}

printf("riscv vs ref: %d, %d\n", q31l_out, g31_out_ref);

//In main function, the comparison function defined in the previous code is called.
// It will compare the average result and speed calculated by the processor with
// the result and speed calculated by the C Code.

int main(int argc, char **argv)

{

BENCH_INITQ);
£32_mean_compare() ;
q7_mean_compare() ;
ql5_mean_compare();
q31_mean_compare();
BENCH_FINISHQ);

return 0;

e The ref_mean.c file is an averaging operation program for different data types in C Code, which is used to compare
with the results of processor. The code is explained as follows:

// Use C code to take the average of input data for different data types such as
// 32-bit floating point, 8-bit, 16-bit, and 32-bit integers value. The results
// will be compared with the results of processor.

// 32-bit floating point average function

void ref_mean_£32(

float32_t * pSrc,
uint32_t blockSize,

float32_t * pResult)

uint32_t i;

float32_t sum=0;
for(i=0;i<blockSize;i++)
{

sum += pSrc[i];

(continues on next page)
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}

“pResult = sum / (float32_t)blockSize;
}
// 32-bit interger average function
void ref_mean_q31(

q3l_t * pSrc,

uint32_t blockSize,

g31_t * pResult)

uint32_t i;

q63_t sum=0;

for(i=0;i<blockSize;i++)

{

sum += pSrc[i];

}

*pResult = (g31_t) (sum / (int32_t) blockSize);
}
// 16-bit interger average function
void ref_mean_q15(

ql5_t * pSrc,

uint32_t blockSize,

ql5_t * pResult)

uint32_t i;

q31_t sum=0;
for(i=0;i<blockSize;i++)
{

sum += pSrc[i];

}

*pResult = (ql15_t) (sum / (int32_t) blockSize);

(continues on next page)
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3
// 8-bit interger average function
void ref_mean_q7(

q7_t * pSrc,

uint32_t blockSize,

q7_t * pResult)

uint32_t i;

q3l_t sum=0;
for(i=0;i<blockSize;i++)
{

sum += pSrc[i];

}

*pResult = (g7_t) (sum / (int32_t) blockSize);

* riscv_math.h includes all the functions supported by NMSIS DSP library and provide the name of these functions,
the relevant codes are listed as follows:

// 8-bit interger average function
i
* @brief Mean value of a Q7 vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void riscv_mean_q7(
const q7_t * pSrc,
uint32_t blockSize,
q7_t * pResult);
// 16-bit interger average function

/:': *

(continues on next page)
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* @brief Mean value of a Q15 vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
¥/
void riscv_mean_q15(
const ql5_t * pSrc,
uint32_t blockSize,
ql5_t * pResult);
// 32-bit interger average function
S
* @brief Mean value of a Q31 vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
¥/
void riscv_mean_q31(
const q31_t * pSrc,
uint32_t blockSize,
q31_t * pResult);
// 32-bit floating point average function
S
* @brief Mean value of a floating-point vector.
* @param[in] pSrc is input pointer
* @param[in] blockSize is the number of samples to process
* @param[out] pResult is output value.
*/
void riscv_mean_£32(

const float32_t * pSrc,

(continues on next page)
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uint32_t blockSize,

float32_t * pResult);

* The above part of code is the functions used in this example. riscv_mean_f32, riscv_mean_q7, riscv_mean_ql5,
riscv_mean_q31 are average functions for 32-bit floating point, 8-bit, 16-bit, and 32-bit fixed-point values. When
users need to use other functions, users can also find their corresponding function names in the riscv_math.h header
file.

* If there are no available functions to meet the requirements, the user can directly call the DSP intrinsic functions.
The intrinsic functions can be found in the core_feature_dsp.h header file. The example segment code of the intrinsic
functions is as below:

// kabs8 (simd 8-bit saturating absolute)

__STATIC_FORCEINLINE unsigned long __RV_KABS8(unsigned long a)

{
unsigned long result;
__ASM volatile("kabs8 %0, %1" : "=r"(result) : "r"(a));
return result;

}

About how to run the demo_dsp program, please refer to Nuclei-SDK (https://github.com/Nuclei- Software/nuclei-sdk)
for more details. After running the program, the printout message on the serial port is as shown in Printout message after
running demo_dsp program (page 165), the terminal prints the result calculated by the averaging function from NMSIS
DSP library and the result of the C Code.

T COM4 - Tera Term VT — O X

File Edit Setup Control Window Help
Nuclei SDK Build Time: Feb 25 2828, 17:
Download Mode: FLASHXIP

PU Frequency 1896886686 Hz

SV, BENCH START, 98513@

CSV, riscv_mean_f32, 13085

SV, ref_mean_f32, 12740

riscv vs ref: 18.172632, 18.172632

SV, riscv_mean_q7, 906
SV, ref_mean_q7, 905
riscv vs ref: 3, 3

SV, riscv_mean_ql5, 1846
SV, ref_mean_qg15, 766

riscv vs ref: -1, -1

SV, riscv_mean_q31, 1789
SV, ref_mean_q31, 1648

riscv vs ref: -611, -611
CSV, BENCH END, 3321173

Fig. 26.1: Printout message after running demo_dsp program
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26.5 Appendix A: Nuclei Default SIMD DSP Additional Instruction

26.5.1 EXPD80, EXPD81, EXPD82, EXPD83, EXPD84, EXPD85, EXPD86, EXPD87

Type: DSP
Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
EXPD XXXXX Rsl1 111 Rd GES80OB
0010010 1111111
Instr XXXXX
EXPD80 00000
EXPDS81 00001
EXPD&2 00010
EXPDS83 00011
EXPD84 00100
EXPDS85 00101
EXPD86 00110
EXPDS87 00111
Syntax:

EXPD8® Rd, Rsl
EXPD81 Rd, Rsl
EXPD82 Rd, Rsl
EXPD83 Rd, Rsl
EXPD84 Rd, Rsl
EXPD85 Rd, Rsl
EXPD86 Rd, Rsl

EXPD87 Rd, Rsl

Purpose:

When RV32, copy 8-bit data from 32-bit chunks into 4 bytes in a register; When RV64, copy 8-bit data from 64-bit chunks

into 8 bytes in a register.

Description:

RV32:

EXPD80 Expand and Copy Byte 0 to 32 bit
EXPDS81 Expand and Copy Byte 1 to 32 bit
EXPD82 Expand and Copy Byte 2 to 32 bit
EXPD83 Expand and Copy Byte 3 to 32 bit
RVo4:

EXPD80 Expand and Copy Byte 0 to 64 bit
EXPD81 Expand and Copy Byte 1 to 64 bit
EXPD82 Expand and Copy Byte 2 to 64 bit
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EXPD83 Expand and Copy Byte 3 to 64 bit
EXPD84 Expand and Copy Byte 4 to 64 bit
EXPDS85 Expand and Copy Byte 5 to 64 bit
EXPD86 Expand and Copy Byte 6 to 64 bit
EXPD87 Expand and Copy Byte 7 to 64 bit

Operations:

RV32:

Rd.W[x][31:0] = CONCAT(Rs1.B[0][7:0], Rs1.B[0][7:0], Rs1.B[O][7:0],
Rs1.B[0®][7:0]);//EXPD80

Rd.W[x][31:0] = CONCAT(Rs1.B[1][7:0], Rs1.B[1][7:0], Rs1.B[1][7:0],
Rs1.B[1][7:0]);//EXPD81

Rd.W[x][31:0] = CONCAT(Rs1.B[2][7:0], Rs1.B[2][7:0], Rs1.B[2][7:0],
Rs1.B[2][7:0]);//EXPD82

Rd.W[x][31:0] = CONCAT(Rs1.B[3][7:0], Rs1.B[3][7:0], Rs1.B[3][7:0],
Rs1.B[3][7:0]1);//EXPD8&3

X=0

RV64:

Rd.W[x][31:0] = CONCAT(Rs1.B[0][7:0], Rs1.B[0][7:0], Rs1.B[0][7:0],
Rs1.B[0®][7:0]);//EXPD80

Rd.W[x][31:0] = CONCAT(Rs1.B[1][7:0], Rs1.B[1][7:0], Rs1.B[1][7:0],
Rs1.B[1][7:0]);//EXPD81

Rd.W[x][31:0] = CONCAT(Rs1.B[2][7:0], Rs1.B[2][7:0], Rs1.B[2][7:0],
Rs1.B[2][7:0]);//EXPD82

Rd.W[x][31:0] = CONCAT(Rs1.B[3][7:0], Rs1.B[3][7:0], Rs1.B[3][7:0],
Rs1.B[3][7:0]1);//EXPD8&3

Rd.W[x][31:0] = CONCAT(Rs1.B[4][7:0], Rs1.B[4][7:0], Rs1.B[4][7:0],
Rs1.B[4][7:0]);//EXPD84

Rd.W[x][31:0] = CONCAT(Rs1.B[5][7:0], Rs1.B[5][7:0], Rsl1.B[5][7:0],
Rs1.B[5][7:0]);//EXPD85

Rd.W[x][31:0] = CONCAT(Rs1.B[6][7:0], Rs1.B[6][7:0], Rs1.B[6][7:0],
Rs1.B[6][7:0]);//EXPD86

Rd.W[x][31:0] = CONCAT(Rs1.B[7][7:0], Rs1.B[7][7:0], Rsl1.B[7][7:0],
Rs1.B[7]1[7:0]);//EXPD87

X=0,1

Exceptions: None
Privilege level: All
Note:

Intrinsic functions:

EXPDS80:
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unsigned long __expd80(unsigned long a);
RV32:
uint8x4_t __v_expd80(uint8x4_t a);

RV64:

uint8x8_t v_expd80 (uint8x8_t a);

EXPDS1:

unsigned long __expd81(unsigned long a);
// RV32:

uint8x4_t __v_expd81(uint8x4_t a);

// RV64:

uint8x8_t __v_expd81(uint8x8_t a);

EXPDS82:

unsigned long __expd82(unsigned long a);
// RV32:
uint8x4_t __v_expd82(uint8x4_t a);

// RV64:

uint8x8_t __v_expd82(uint8x8_t a);

EXPD83:

unsigned long __expd83(unsigned long a);
// RV32:

uint8x4_t __v_expd83(uint8x4_t a);

// RV64:

uint8x8_t v_expd83(uint8x8_t a);

EXPD84:

unsigned long __expd84(unsigned long a);

uint8x8_t __v_expd84(uint8x8_t a);

EXPDSS:

unsigned long __expd85(unsigned long a);

uint8x8_t __v_expd85(uint8x8_t a);

EXPDS86:
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unsigned long __expd86(unsigned long a);

uint8x8_t __v_expd86(uint8x8_t a);

EXPD87:

unsigned long __expd87(unsigned long a);

uint8x8_t __v_expd87(uint8x8_t a);

26.6 Appendix B: Nuclei N1 SIMD DSP Additional Instruction

26.6.1 DKHMS (64-bit SIMD Signed Saturating Q7 Multiply)

Type: SIMD

Format:
31-25 24 -20 19-15 14-12 11-7 6-0
DKHMS8 Rs2 Rsl 111 Rd GES80OB
1000111 1111111

Syntax:

DKHM8 Rd, Rsl, Rs2

Purpose:
Do Q7xQ7 element multiplications simultaneously. The Q14 results are then reduced to Q7 numbers again.
Description:

For the “DKHMS8” instruction, multiply the top 8-bit Q7 content of 16-bit chunks in Rs1 with the top 8-bit Q7 content of
16-bit chunks in Rs2. At the same time, multiply the bottom 8-bit Q7 content of 16-bit chunks in Rs1 with the bottom
8-bit Q7 content of 16-bit chunks in Rs2.

The Q14 results are then right-shifted 7-bits and saturated into Q7 values. The Q7 results are then written into Rd. When
both the two Q7 inputs of a multiplication are 0x80, saturation will happen. The result will be saturated to 0x7F and the
overflow flag OV will be set.

Operations:

oplt = Rs1.B[x+1]; op2t = Rs2.B[x+1]; // top

oplb

Rs1.B[x]; op2b = Rs2.B[x]; // bottom

for ((aop,bop,res) in [(oplt,op2t,rest), (oplb,op2b,resb)]) {
if (0x80 != aop | 0x80 != bop) {

res = (aop s* bop) >> 7;

} else {
res= 0x7F;
oV = 1;

}

(continues on next page)
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}
Rd.H[x/2] = concat(rest, resh);

x=0,2,4,6

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkhm8(unsigned long long a, unsigned long long b);

int8x8_t __v_dkhm8(int8x8_t a, int8x8_t b);

26.6.2 DKHM16 (64-bit SIMD Signed Saturating Q15 Multiply)

Type: SIMD

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0
DKHM16 RS2 Rsl 111 Rd GEZ0B
1000011 1111111
Syntax:

DKHM16 Rd, Rsl, Rs2

Purpose:
Do Q15xQ15 element multiplications simultaneously. The Q30 results are then reduced to Q15 numbers again.
Description:

Operations:

oplt = Rsl.H[x+1]; op2t = Rs2.H[x+1]; // top

oplb

Rs1.H[x]; op2b = Rs2.H[x]; // bottom

for ((aop,bop,res) in [(oplt,op2t,rest), (oplb,op2b,resb)]) {
if (0x8000 != aop | 0x8000 != bop) {
res = (aop s* bop) >> 15;
} else {
res= Ox7FFF;

oV = 1;

(continues on next page)
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Rd.W[x/2] = concat(rest, resbh);

x=0,2

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkhml6(unsigned long long a, unsigned long long b);

intl6x4_t __v_dkhml6(intl6x4_t a, intl6x4_t b);

26.6.3 DKABSS8 (64-bit SIMD 8-bit Saturating Absolute)

Type: SIMD

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0
ONEOP DKABSS Rsl 111 Rd GES0OB
1010110 10000 1111111

Syntax:

DKABS8 Rd, Rsl

Purpose:
Get the absolute value of 8-bit signed integer elements simultaneously.
Description:

This instruction calculates the absolute value of 8-bit signed integer elements stored in Rs1 and writes the element results
to Rd. If the input number is 0x80, this instruction generates Ox7f as the output and sets the OV bit to 1.

Operations:

src = Rsl1.B[x];

if (src == 0x80) {

src = Ox7f;

oV = 1;

} else if (src[7] == 1)

src = -src;

}

Rd.B[x] = src;

x=7...0

Exceptions: None

Privilege level: All

26.6. Appendix B: Nuclei N1 SIMD DSP Additional Instruction 171




Nuclei® RISC-V Instruction Set Architecture Specification

Note: None

Intrinsic functions:

unsigned long long __dkabs8(unsigned long long a);

int8x8_t v_dkabs8(int8x8_t a);

26.6.4 DKABS16 (64-bit SIMD 16-bit Saturating Absolute)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
ONEOP DKABS16 | Rsl 111 Rd GESOB
1010110 10001 1111111
Syntax:

DKABS16 Rd, Rsl

Purpose:
Get the absolute value of 16-bit signed integer elements simultaneously.
Description:

This instruction calculates the absolute value of 16-bit signed integer elements stored in Rs1 and writes the element results
to Rd. If the input number is 0x8000, this instruction generates Ox7fff as the output and sets the OV bit to 1.

Operations:

src = Rsl.H[x];
if (src == 0x8000) {
src = Ox7fff;
oV = 1;
} else if (src[15] == 1)
src = -src;
}
Rd.H[x] = src;

x=3...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkabsl6(unsigned long long a);

intl6x4_t __v_dkabs16(intl6x4_t a);
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26.6.5 DKSLRAS8 (64-bit SIMD 8-bit Shift Left Logical with Saturation or Shift Right
Arithmetic)

Type: SIMD

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0
DKSLRA Rs2 Rsl 111 Rd GEZ0B
0101111 1111111
Syntax:

DKSLRA8 Rd, Rsl, Rs2

Purpose:
Do 8-bit elements logical left (positive) or arithmetic right (negative) shift operation with Q7 saturation for the left shift.
Description:

The 8-bit data elements of Rs1 are left-shifted logically or right-shifted arithmetically based on the value of Rs2[3:0].
Rs2[3:0] is in the signed range of [-23,23-1]. A positive Rs2[3:0] means logical left shift and a negative Rs2[3:0] means
arithmetic right shift. The shift amount is the absolute value of Rs2[3:0]. However, the behavior of “Rs2[3:0 ==-23 (0x8)”
is defined to be equivalent to the behavior of “Rs2[3:0]==-(23-1) (0x9)”.

Operations:

if (Rs2[3:0] < 0 {

sa -Rs2[3:0];

sa = (sa == 8)? 7 : sa;
Rd.B[x] = SE8(Rsl.B[x][7:sa]);
} else {
sa = Rs2[2:0];
res[(7+sa):0] = Rsl.B[x] <<(logic) sa;
if (res > (2*7)-1) {
res[7:0] = 0x7f; OV = 1;
} else if (res < -277) {
res[7:0] = 0x80; OV = 1;
}
Rd.B[x] = res[7:0];
}

x=7...0

Exceptions: None
Privilege level: All
Note: None
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Intrinsic functions:

unsigned long long __dkslra8(unsigned long long a, int b);

int8x8_t __v_dkslra8(int8x8_t a, int b);

26.6.6 DKSLRA16 (64-bit SIMD 16-bit Shift Left Logical with Saturation or Shift Right
Arithmetic)

Type: SIMD

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0
DKSLRA16 Rs2 Rsl 111 Rd GES0OB
0101011 1111111

Syntax:

DKSLRA16 Rd, Rsl, Rs2

Purpose:
Do 16-bit elements logical left (positive) or arithmetic right (negative) shift operation with Q15 saturation for the left shift.
Description:

The 16-bit data elements of Rs1 are left-shifted logically or right-shifted arithmetically based on the value of Rs2[4:0].
Rs2[4:0] is in the signed range of [-24, 274-1]. A positive Rs2[4:0] means logical left shift and a negative Rs2[4:0]
means arithmetic right shift. The shift amount is the absolute value of Rs2[4:0]. However, the behavior of “Rs2[4:0]==-
274 (0x10)” is defined to be equivalent to the behavior of “Rs2[4:0]==-(2"4-1) (0x11)".

Operations:

if (Rs2[4:0] < 0) {

sa = -Rs2[4:0];

sa (sa == 16)? 15 : sa;

Rd.H[x] = SE16(Rs1.H[x][15:sa]);
} else {
sa = Rs2[3:0];
res[(15+sa):0] = Rsl.H[x] <<(logic) sa;
if (res > (2715)-1) {
res[15:0] = Ox7£fff; OV = 1;
} else if (res < -2415) {
res[15:0] = 0x8000; OV = 1;
}

d.H[x] = res[15:0];

(continues on next page)

26.6. Appendix B: Nuclei N1 SIMD DSP Additional Instruction 174




Nuclei® RISC-V Instruction Set Architecture Specification

(continued from previous page)

x=3...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkslral6(unsigned long long a, int b);

intlex4_t __v_dkslral6e(intl6x4_t a, int b);

26.6.7 DKADDS8 (64-bit SIMD 8-bit Signed Saturating Addition)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKADDS8 Rs2 Rsl 111 Rd GES0OB
0001100 1111111
Syntax:

DKADD8 Rd, Rsl, Rs2

Purpose:
Do 8-bit signed integer element saturating additions simultaneously.
Description:

This instruction adds the 8-bit signed integer elements in Rs1 with the 8-bit signed integer elements in Rs2. If any of the
results are beyond the Q7 number range (-27 <= Q7 <= 2/7-1), they are saturated to the range and the OV bit is set to 1.
The saturated results are written to Rd.

Operations:

res[x] = Rsl.B[x] + Rs2.B[x];

if (res[x] > 127) {

res[x] = 127;

oV = 1;

} else if (res[x] < -128) {

res[x] = -128;

oV = 1;

}

Rd.B[x] = res[x];

x=7...0

Exceptions: None
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Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkadd8(unsigned long long a, unsigned long long b);

int8x8_t v_dkadd8(int8x8_t a, int8x8_t b);

26.6.8 DKADD16 (64-bit SIMD 16-bit Signed Saturating Addition)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKADDI16 Rs2 Rs1 111 Rd GE80B
0001000 1111111
Syntax:

DKADD16 Rd, Rsl, Rs2

Purpose:
Do 16-bit signed integer element saturating additions simultaneously.
Description:

This instruction adds the 16-bit signed integer elements in Rs1 with the 16-bit signed integer elements in Rs2. If any of
the results are beyond the Q15 number range (-2*15 <= Q15 <= 2*15-1), they are saturated to the range and the OV bit is
set to 1. The saturated results are written to Rd.

Operations:

res[x] = Rsl.H[x] + Rs2.H[x];
if (res[x] > 32767){
res[x] = 32767;
oV = 1;
} else if (res[x] < -32768) {
res[x] = -32768;
ov = 1;
}
Rd.H[x] = res[x];

x=3...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:
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unsigned long long __dkaddl6(unsigned long long a, unsigned long long b);

intl6x4_t v_dkadd16(intl6x4_t a, intlé6x4_t b);

26.6.9 DKSUBS (64-bit SIMD 8-bit Signed Saturating Subtraction)

Type: SIMD

Format:

31-25 24 - 20 19-15 14-12 11-7 6-0
DKSUBS Rs2 Rsl 111 Rd GES0OB
0001101 1111111
Syntax:

DKSUB8 Rd, Rsl, Rs2

Purpose:
Do 8-bit signed elements saturating subtractions simultaneously.
Description:

This instruction subtracts the 8-bit signed integer elements in Rs2 from the 8-bit signed integer elements in Rs1. If any of
the results are beyond the Q7 number range (-27 <= Q7 <= 2/7-1), they are saturated to the range and the OV bit is set to
1. The saturated results are written to Rd.

Operations:

res[x] = Rsl.B[x] - Rs2.B[x];
if (res[x] > (2+7)-1) {
res[x] = (2°A7)-1;
ov = 1;
} else if (res[x] < -247) {
res[x] = -2A7;
ov = 1;
}
Rd.B[x] = res[x];

x=7...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dksub8(unsigned long long a, unsigned long long b);

int8x8_t v_dksub8(int8x8_t a, int8x8_t b);
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26.6.10 DKSUB16 (64-bit SIMD 16-bit Signed Saturating Subtraction)

Type: SIMD

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0
DKSUBI16 Rs2 Rsl 111 Rd GE80B
0001001 1111111
Syntax:

DKSUB16 Rd, Rsl, Rs2

Purpose:
Do 16-bit signed integer elements saturating subtractions simultaneously.
Description:

This instruction subtracts the 16-bit signed integer elements in Rs2 from the 16-bit signed integer elements in Rs1. If any
of the results are beyond the Q15 number range (-2*15 <= Q15 <=2”15-1), they are saturated to the range and the OV bit
is set to 1. The saturated results are written to Rd.

Operations:

res[x] = Rsl.H[x] - Rs2.H[x];

if (res[x] > (2715)-1) {

res[x] = (2415)-1;

oV = 1;

} else if (res[x] < -2A15) {

res[x] = -2715;

oV = 1;

}

Rd.H[x] = res[x];

x=3...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dksubl6(unsigned long long a, unsigned long long b);

intl16x4_t v_dksub16(intl16x4_t a, intl6x4_t b);
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26.7 Appendix C: Nuclei N2 SIMD DSP Additional Instruction

26.7.1 DKHMXS8 (64-bit SIMD Signed Crossed Saturating Q7 Multiply)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKHMXS8 Rs2 Rsl1 000 Rd custom-3
0000000 1111011

Syntax:

DKHMX8 Rd, Rsl, Rs2

Purpose:
Do Q7xQ7 element crossed multiplications simultaneously. The Q15 results are then reduced to Q7 numbers again.
Description:

Operations:

oplt = Rsl.B[x+1]; op2t = Rs2.B[x]; // top

oplb = Rs1.B[x]; op2b = Rs2.B[x+1]; // bottom

for ((aop,bop,res) in [(oplt,op2t,rest), (oplb,op2b,resb)]) {
if (0x80 != aop | 0x80 != bop) {

res = (aop s* bop) >> 7;

} else {
res= 0x7F;
oV = 1;

}

}
Rd.H[x/2] = concat(rest, resbh);

x=0,2,4,6

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkhmx8(unsigned long long a, unsigned long long b);

int8x8_t __v_dkhmx8(int8x8_t a, int8x8_t b);
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26.7.2 DKHMX16 (64-bit SIMD Signed Crossed Saturating Q15 Multiply)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKHMX16 Rs2 Rsl 000 Rd custom-3
0000001 1111011

Syntax:

DKHMX16 Rd, Rsl, Rs2

Purpose:
Do Q15xQ15 element crossed multiplications simultaneously. The Q31 results are then reduced to Q15 numbers again.
Description:

Operations:

oplt = Rsl.H[x+1]; op2t = Rs2.H[x]; // top

oplb Rs1.H[x]; op2b = Rs2.H[x+1]; // bottom
for ((aop,bop,res) in [(oplt,op2t,rest), (oplb,op2b,resb)]) {
if (0x8000 != aop | 0x8000 != bop) {

res = (aop s* bop) >> 15;

} else {
res= Ox7FFF;
oV = 1;

}

}
Rd.W[x/2] = concat(rest, resb);

x=0,2

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkhmx16(unsigned long long a, unsigned long long b);

intl6x4_t __v_dkhmx16(intl6x4_t a, intl6x4_t b);
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26.7.3 DSMMUL (64-bit MSW 32x32 Signed Multiply)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMMUL Rs2 Rsl1 000 Rd custom-3
0000010 1111011

Syntax:

DSMMUL Rd, Rsl, Rs2

Purpose:
Do MSW 32x32 element signed multiplications simultaneously. The results are written into Rd.
Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb Rsl.W[x]; op2b = Rs2.W[x]; // bottom

for ((aop,bop,res) in [(oplt,op2t,rest), (oplb,op2b,resb)]) {
res = (aop s* bop)[63:32];

3

Rd = concat(rest, resb);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dsmmul (unsigned long long a, unsigned long long b);

int32x2_t __v_dsmmul(int32x2_t a, int32x2_t b);

26.7.4 DSMMULU (64-bit MSW 32x32 Unsigned Multiply)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMMULU Rs2 Rsl1 000 Rd custom-3
0000011 1111011

Syntax:

DSMMUL.U Rd, Rsl, Rs2
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Purpose:
Do MSW 32x32 element unsigned multiplications simultaneously. The results are written into Rd.
Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb Rsl.W[x]; op2b = Rs2.W[x]; // bottom

for ((aop,bop,res) in [(oplt,op2t,rest), (oplb,op2b,resb)]) {
res = RUND(aop u* bop)[63:32];

3

Rd = concat(rest, resb);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dsmmulu(unsigned long long a, unsigned long long b);

int32x2_t __v_dsmmulu(int32x2_t a, int32x2_t b);

26.7.5 DKWMMUL (64-bit MSW 32x32 Signed Multiply & Double)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKWMMUL Rs2 Rsl1 000 Rd custom-3
0000100 1111011

Syntax:

DKWMMUL Rd, Rsl, Rs2

Purpose:
Do MSW 32x32 element signed multiplications simultaneously and double. The results are written into Rd.
Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb = Rsl1.W[x]; op2b = Rs2.W[x]; // bottom

for ((aop,bop,res) in [(oplt,op2t,rest), (oplb,op2b,resb)]) {

(continues on next page)
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res = sat.q31(Caop s* bop) << 1)[63:32];
}
Rd = concat(rest, resb);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkwmmul (unsigned long long a, unsigned long long b);

int32x2_t v_dkwmmul (int32x2_t a, int32x2_t b);

26.7.6 DKWMMULU (64-bit MSW 32x32 Unsigned Multiply & Double)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKWMMULU Rs2 Rsl 000 Rd custom-3
0000101 1111011

Syntax:

DKWMMUL.U Rd, Rsl, Rs2

Purpose:
Do MSW 32x32 element unsigned multiplications simultaneously and double. The results are written into Rd.
Descriptions:

Operations:

oplt = Rsl1.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb Rsl.W[x]; op2b = Rs2.W[x]; // bottom

for ((aop,bop,res) in [(oplt,op2t,rest), (oplb,op2b,resb)]) {
res = sat.q31(RUND(aop u* bop) << 1)[63:32];

3

Rd = concat(rest, resb);

x=0

Exceptions: None
Privilege level: All
Note: None
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Intrinsic functions:

unsigned long long __dkwmmulu(unsigned long long a, unsigned long long b);

int32x2_t __v_dkwmmulu(int32x2_t a, int32x2_t b);

26.7.7 DKABS32 (64-bit SIMD 32-bit Saturating Absolute)

Type: SIMD

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0
DKABS32 DKABS32 | Rsl 000 Rd custom-3
0000110 00000 1111011

Syntax:

DKABS32 Rd, Rsl

Purpose:
Get the absolute value of 32-bit signed integer elements simultaneously.
Description:

This instruction calculates the absolute value of 32-bit signed integer elements stored in Rs1 and writes the element results
to Rd. If the input number is 0x8000_0000, this instruction generates Ox7{ff_fIff as the output and sets the OV bit to 1.

Operations:

src = Rsl.W[x];

if (src == 0x8000_0000) {
src = Ox7fff ffff;
oV = 1;

} else if (src[31] == 1)

SIrc = -Src;

Rd.W[x] = src;

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkabs32(unsigned long long a);

int32x2_t __v_dkabs32(int32x2_t a);
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26.7.8 DKSLRAS32 (64-bit SIMD 32-bit Shift Left Logical with Saturation or Shift Right
Arithmetic)

Type: SIMD

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0
DKSLRA32 Rs2 Rsl 000 Rd custom-3
0000111 1111011
Syntax:

DKSLRA32 Rd, Rsl, Rs2

Purpose:
Do 31-bit elements logical left (positive) or arithmetic right (negative) shift operation with Q31 saturation for the left shift.
Description:

The 31-bit data elements of Rs1 are left-shifted logically or right-shifted arithmetically based on the value of Rs2[5:0].
Rs2[5:0] is in the signed range of [-2/5, 275-1]. A positive Rs2[5:0] means logical left shift and a negative Rs2[4:0]
means arithmetic right shift. The shift amount is the absolute value of Rs2[5:0]. However, the behavior of “Rs2[5:0]==-
275 (0x20)” is defined to be equivalent to the behavior of “Rs2[5:0]==-(2"5-1) (0x21)".

Operations:

if (Rs2[5:0] < 0) {

sa -Rs2[5:0];

sa (sa == 32)? 31 : sa;

Rd.W[x] = SE32(Rsl.W[x][31l:sa]);
} else {
sa = Rs2[4:0];
res[(31+sa):0] = Rsl.W[x] <<(logic) sa;

if (res > (2731)-1) {

res[31:0] = Ox7fff_ffff; OV = 1;
} else if (res < -2431) {
res[31:0] = 0x8000_0000; OV = 1;

}

Rd.W[x] = res[31:0];

x=1...0

Exceptions: None
Privilege level: All
Note: None
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Intrinsic functions:

unsigned long long __dkslra32(unsigned long long a, int b);

int32x2_t __v_dkslra32(int32x2_t a, int b);

26.7.9 DKADD32(64-bit SIMD 32-bit Signed Saturating Addition)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKADD32 Rs2 Rsl1 000 Rd custom-3
0001000 1111011
Syntax:

DKADD32 Rd, Rsl, Rs2

Purpose:
Do 32-bit signed integer element saturating additions simultaneously.
Description:

This instruction adds the 32-bit signed integer elements in Rs1 with the 32-bit signed integer elements in Rs2. If any of
the results are beyond the Q31 number range (-2"31 <= Q31 <= 2"31-1), they are saturated to the range and the OV bit is
set to 1. The saturated results are written to Rd.

Operations:

res[x] = Rsl.W[x] + Rs2.W[x];
if (res[x] > Ox7fff ffff) {
res[x] = Ox7fff ffff;
oV = 1;
} else if (res[x] < 0x8000_0000) {
res[x] = 0x8000_0000;
oV = 1;
}
Rd.W[x] = res[x];

x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkadd32(unsigned long long a, unsigned long long b);

int32x2_t v_dkadd32(int32x2_t a, int32x2_t b);
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26.7.10 DKSUB32(64-bit SIMD 32-bit Signed Saturating Subtraction)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKSUB32 Rs2 Rsl1 000 Rd custom-3
0001001 1111011
Syntax:

DKSUB32 Rd, Rsl, Rs2

Purpose:
Do 32-bit signed integer elements saturating subtractions simultaneously.
Description:

This instruction subtracts the 32-bit signed integer elements in Rs2 from the 32-bit signed integer elements in Rs1. If any
of the results are beyond the Q31 number range (-231 <= Q31 <= 2"31-1), they are saturated to the range and the OV bit
is set to 1. The saturated results are written to Rd.

Operations:

res[x] = Rsl.W[x] - Rs2.W[x];
if (res[x] > (2#31)-1) {
res[x] = (2A31)-1;
ov = 1;
} else if (res[x] < -2431) {
res[x] = -27431;
ov = 1;
}
Rd.W[x] = res[x];

x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dksub32(unsigned long long a, unsigned long long b);

int32x2_t v_dksub32(int32x2_t a, int32x2_t b);
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26.7.11 DRADD16(64-bit SIMD 16-bit Halving Signed Addition)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DRADDI16 Rs2 Rsl 000 Rd custom-3
0101110 1111011
Syntax:

DRADD16 Rd, Rsl, Rs2

Purpose:
Do 16-bit signed integer element additions simultaneously. The results are halved to avoid overflow or saturation.
Description:

This instruction adds the 16-bit signed integer elements in Rs1 with the 16-bit signed integer elements in Rs2. The results
are first arithmetically right-shifted by 1 bit and then written to Rd.

Operations:

Rd.H[x] = [(Rsl.H[x]) + (Rs2.H[x])] s>> 1;

x=3...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __draddl6(unsigned long long a, unsigned long long b);

intl6x4_t v_draddl16(intl6x4_t a, intl6x4_t b);

26.7.12 DSUB16(64-bit SIMD 16-bit Halving Signed Subtraction)

Type: SIMD

Format:

31-25 24 - 20 19-15 14-12 11-7 6-0
DSUB16 Rs2 Rsl 000 Rd custom-3
0101111 1111011
Syntax:

DSUB16 Rd, Rsl, Rs2

Purpose:
Do 16-bit integer element subtractions simultaneously.
Description:

This instruction adds the 16-bit signed integer elements in Rs1 with the 16-bit signed integer elements in Rs2. The results
are first arithmetically right-shifted by 1 bit and then written to Rd.

Operations:

26.7. Appendix C: Nuclei N2 SIMD DSP Additional Instruction 188




Nuclei® RISC-V Instruction Set Architecture Specification

Rd.H[x] = [(Rsl.H[x]) - (Rs2.H[x1)] ;

x=3...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dsubl6(unsigned long long a, unsigned long long b);

intl6x4_t v_dsubl6(intl6x4_t a, intl6x4_t b);

26.7.13 DRADD32(64-bit SIMD 32-bit Halving Signed Addition)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DRADD32 Rs2 Rsl 000 Rd custom-3
0110000 1111011
Syntax:

DRADD32 Rd, Rsl, Rs2

Purpose:
Do 32-bit signed integer element additions simultaneously. The results are halved to avoid overflow or saturation.
Description:

This instruction adds the 32-bit signed integer elements in Rs1 with the 32-bit signed integer elements in Rs2. The results
are first arithmetically right-shifted by 1 bit and then written to Rd.

Operations:

Rd.W[x] = [(Rs1.W[x]) + (Rs2.W[x])] s>> 1;

x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dradd32(unsigned long long a, unsigned long long b);

int32x2_t v_dradd32(int32x2_t a, int32x2_t b);
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26.7.14 DSUB32(64-bit SIMD 32-bit Halving Signed Subtraction)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSUB32 Rs2 Rsl1 000 Rd custom-3
0110001 1111011

Syntax:

DSUB32 Rd, Rsl, Rs2

Purpose:
Do 32-bit integer element subtractions simultaneously.
Description:

This instruction subtracts the 32-bit signed integer elements in Rs2 from the 32-bit signed integer elements in Rs1 . The
results are written to Rd.

Operations:

Rd.W[x] = [(Rsl.E[x]) - (Rs2.E[x1)] ;

x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dsub32(unsigned long long a, unsigned long long b);

int32x2_t v_dsub32(int32x2_t a, int32x2_t b);

26.7.15 DMSR16(Signed Multiply Halfs with Right Shift 16-bit and Cross Multiply Halfs
with Right Shift 16-bit)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DMSR16 Rs2 Rsl 000 Rd custom-3
1011111 1111011

Syntax:

DMSR16 Rd, Rsl, Rs2

Purpose:

Do two signed 16-bit multiplications and cross multiplications from the 16-bit elements of two registers; and each multi-
plications performs a right shift operation.

Description:

For the “DMSR16” instruction, multiply the top 16-bit Q15 content of 32-bit chunks in Rs1 with the top 16-bit Q15 content
of 32-bit chunks in Rs2, multiply the bottom 16-bit Q15 content of 32-bit chunks in Rs1 with the bottom 16-bit Q15 content
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of 32-bit chunks in Rs2.

At the same time, multiply the top 16-bit Q15 content of 32-bit chunks in Rs1 with the bottom16-bit Q15 content of 32-bit
chunks in Rs2 and multiply the bottom16-bit Q15 content of 32-bit chunks in Rs1 with the top16-bit Q15 content of 32-bit
chunks in Rs2. The Q31 results are then right-shifted 16-bits and clipped to Q15 values. The Q15 results are then written
into Rd.

Operations:

Rd.H[0] = (Rs1.H[®] s* Rs2.H[0]) s>> 16
Rd.H[1] = (Rsl1.H[1] s* Rs2.H[1]) s>> 16
Rd.H[2] = (Rs1.H[1] s* Rs2.H[0]) s>> 16
Rd.H[3] = (Rs1.H[0] s* Rs2.H[1]) s>> 16

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __DMSR16(unsigned long a, unsigned long b);

intl6x4_t __v_dmsrl6(intl6x2_t a, intl6x2_t b);

26.7.16 DMSR17(Signed Multiply Halfs with Right Shift 17-bit and Cross Multiply Halfs
with Right Shift 17-bit)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DMSR17 Rs2 Rsl1 000 Rd custom-3
1100000 1111011

Syntax:

DMSR17 Rd, Rsl, Rs2

Purpose:

Do two signed 16-bit multiplications and cross multiplications from the 16-bit elements of two registers; and each multi-
plications performs a right shift operation.

Description:

For the “DMSR17” instruction, multiply the top 16-bit Q15 content of 32-bit chunks in Rs1 with the top 16-bit Q15 content
of 32-bit chunks in Rs2, multiply the bottom 16-bit Q15 content of 32-bit chunks in Rs1 with the bottom 16-bit Q15 content
of 32-bit chunks in Rs2.

At the same time, multiply the top 16-bit Q15 content of 32-bit chunks in Rs1 with the bottom16-bit Q15 content of 32-bit
chunks in Rs2 and multiply the bottom16-bit Q15 content of 32-bit chunks in Rs1 with the top16-bit Q15 content of 32-bit
chunks in Rs2. The Q31 results are then right-shifted 17-bits and clipped to Q15 values. The Q15 results are then written
into Rd.

Operations:

RA.H[®] = (Rs1.H[0] s* Rs2.H[0]) s>> 17

(continues on next page)
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Rd.H[1] = (Rsl1.H[1] s* Rs2.H[1]) s>> 17
Rd.H[2] = (Rs1.H[1] s* Rs2.H[0]) s>> 17
Rd.H[3] = (Rs1.H[0] s* Rs2.H[1]) s>> 17

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __DMSR17(unsigned long a, unsigned long b);

intl6x4_t __v_dmsrl7(intl6x2_t a, intl6x2_t b);

26.7.17 DMSR33(Signed Multiply with Right Shift 33-bit and Cross Multiply with Right

Shift 33-bit)
Type: SIMD
Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DMSR33 Rs2 Rsl1 000 Rd custom-3
1100001 1111011
Syntax:

DMSR33 Rd, Rsl, Rs2

Purpose:

Do two signed 32-bit multiplications from the 32-bit elements of two registers, and each multiplications performs a right
shift operation.

Description:

For the “DMSR33”instruction, multiply the top 32-bit Q31 content of 64-bit chunks in Rs1 with the top 32-bit Q31 content
of 64-bit chunks in Rs2. At the same time, multiply the bottom 32-bit Q31 content of 64-bit chunks in Rs1 with the bottom
32-bit Q31 content of 64-bit chunks in Rs2.

The Q63 results are then right-shifted 33-bits and clipped to Q31 values. The Q31 results are then written into Rd.

Operations:

RA.W[O] = (Rs1.W[O] s* Rs2.W[O]) s>> 33

Rd.W[1] (Rs1.W[1] s* Rs2.W[1]) s>> 33

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dmsr33(unsigned long long a, unsigned long long b);

int32x2_t v_dmsr33(int32x2_t a, int32x2_t b);

26.7. Appendix C: Nuclei N2 SIMD DSP Additional Instruction 192




Nuclei® RISC-V Instruction Set Architecture Specification

26.7.18 DMXSR33(Signed Multiply with Right Shift 33-bit and Cross Multiply with Right
Shift 33-bit)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DMXSR33 Rs2 Rsl1 000 Rd custom-3
1110011 1111011

Syntax:

DMXSR33 Rd, Rsl, Rs2

Purpose:

Do two signed 32-bit cross multiplications from the 32-bit elements of two registers, and each multiplications performs a
right shift operation.

Description:

For the “DMXSR33” instruction, multiply the top 32-bit Q31 content of 64-bit chunks in Rs1 with the bottom 32-bit Q31
content of 64-bit chunks in Rs2. At the same time, multiply the bottom 32-bit Q31 content of 64-bit chunks in Rs1 with
the top 32-bit Q31 content of 64-bit chunks in Rs2.

The Q63 results are then right-shifted 33-bits and clipped to Q31 values. The Q31 results are then written into Rd.

Operations:

Rd.W[0] (Rs1.W[O®] s* Rs2.W[1]) s>> 33

Rd.W[1] (Rs1.W[1] s* Rs2.W[O]) s>> 33

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dmxsr33(unsigned long long a, unsigned long long b);

int32x2_t __v_dmxsr33(int32x2_t a, int32x2_t b);

26.7.19 DREDAS16(Reduced Addition and Reduced Subtraction)

Type: SIMD

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0
DREDAS16 DREDASI16 | Rsl 000 Rd custom-3
0000110 00010 1111011

Syntax:

DREDAS16 Rd, Rsl

Purpose:

Do halfs reduced subtraction and halfs reduced addition from a register. The result is written to Rd.

Description:
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For the “DREDAS16” instruction, subtract the top 16-bit Q15 element from the bottom 16-bit Q15 element of the bottom
32-bit Q31 content of 64-bit chunks in Rs1. At the same time, add the the top16-bit Q15 element with the bottom16-bit
Q15 element of the top 32-bit Q31 content of 64-bit chunks in Rs1. The two Q15 results are then written into Rd.

Operations:

Rd.H[0] = Rs1.H[O] - Rs1.H[1]

Rd.H[1] Rs1.H[2] + Rsl1l.H[3]

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long __dredasl6(unsigned long long a);

intl6x2_t __v_dredasl6(intl6x4_t a);

26.7.20 DREDSA16(Reduced Subtraction and Reduced Addition)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DREDSA16 DREDSA16 | Rsl 000 Rd custom-3
0000110 00011 1111011

Syntax:

DREDSA16 Rd, Rsl

Purpose:
Do halfs reduced subtraction and halfs reduced addition from a register. The result is written to Rd.
Description:

For the “DREDSA16” instruction, add the top 16-bit Q15 element from the bottom 16-bit Q15 element of the bottom 32-bit
Q31 content of 64-bit chunks in Rs1. At the same time, subtract the the top16-bit Q15 element with the bottom16-bit Q15
element of the top 32-bit Q31 content of 64-bit chunks in Rs1. The two Q15 results are then written into Rd.

Operations:
Rd.H[0®] = Rsl1.H[0] + Rs1.H[1]
Rd.H[1] = Rsl1.H[2] - Rsl1.H[3]

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long __dredsal6(unsigned long long a);

intl6x2_t __v_dredsal6(intl6x4_t a);
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26.7.21 DKCLIP64(64-bit Clipped to 16-bit Saturation Value)

Type: SIMD

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0
DKCLIP64 DKCLIP64 | Rsl 000 Rd custom-3
0000110 00001 1111011
Syntax:

DKCLIP64 Rd, Rs

Purpose:

Do 15-bit element arithmetic right shift operations and limit result into 32-bit int,then do saturate operation to 16-bit and
clip result to 16-bit Q15.

Description:

For the “DKCLIP64” instruction, shift the input 15 bits to the right and data convert the result to 32-bit int type, after
which the input is saturated to limit the data to between 2!°-1 and -2'3. the result is converted to 16-bits q15 type. The
final results are written to Rd.

Operations:

const int32_t max = (int32_t) ((1U << 150) - 1U0);
const int32_t min = -1 - max ;
int32_t val = (int32_t)(Rs s>> 15);
if (val > max) {
Rd = max;

} else if (val < min) {

Rd = min;
} else {
Rd = (gql5_t)val;

}

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

intl6_t __dkclip64(long long a);

ql5_t __v_dkclip64(int64_t a);
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26.7.22 DKMDA(Signed Multiply Two Halfs and Add)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMDA Rs2 Rsl1 000 Rd custom-3
0110010 1111011
Syntax:

DKMDA Rd, Rsl, Rs2

Purpose:

Do two signed 16-bit multiplications from the 32-bit elements of two registers; and then adds the two 32-bit results together.
The addition result may be saturated.

DKMDA: top*top + bottom*bottom (per 32-bit element)
Description:

This instruction multiplies the bottom 16-bit content of the 32-bit elements of Rs1 with the bottom 16-bit content of the
32-bit elements of Rs2 and then adds the result to the result of multiplying the top 16-bit content of the 32-bit elements of
Rs1 with the top 16-bit content of the 32-bit elements of Rs2.

The addition result is checked for saturation. If saturation happens, the result is saturated to 23'-1 The final results are
written to Rd. The 16-bit contents are treated as signed integers.

Operations:

if (Rsl.W[x] != 0x80008000) or (Rs2.W[x] != 0x80008000) {

Rd.W[x]

(Rs1.W[x].H[1] * Rs2.W[x].H[1]) + (Rsl.W[x].H[O®] * Rs2.W[x].H[0]);

} else {

Rd.W[x] = Ox7fffffff;

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkmda(unsigned long long a, unsigned long long b);

int32x2_t __v_dkmda(intl6x4_t a, intl6x4_t b);
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26.7.23 DKMXDA(Signed Crossed Multiply Two Halfs and Add)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMXDA Rs2 Rsl1 000 Rd custom-3
0110011 1111011
Syntax:

DKMXDA Rd, Rsl, Rs2

Purpose:

Do two signed 16-bit multiplications from the 32-bit elements of two registers; and then adds the two 32-bit results together.
The addition result may be saturated.

DKMXDA: top*bottom + top*bottom (per 32-bit element)
Description:

This instruction multiplies the bottom 16-bit content of the 32-bit elements of Rs1 with the top 16-bit content of the 32-bit
elements of Rs2 and then adds the result to the result of multiplying the top 16-bit content of the 32-bit elements of Rsl
with the bottom 16-bit content of the 32-bit elements of Rs2.

The addition result is checked for saturation.If saturation happens, the result is saturated to 23!-1 The final results are
written to Rd. The 16-bit contents are treated as signed integers.

Operations:

if (Rsl.W[x] != 0x80008000) or (Rs2.W[x] != 0x80008000) {

Rd.W[x]

(Rs1.W[x].H[1] * Rs2.W[x].H[0]) + (Rsl.W[x].H[O®] * Rs2.W[x].H[1]);

} else {

Rd.W[x] = Ox7fffffff;

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkmxda(unsigned long long a, unsigned long long b);

int32x2_t __v_dkmxda(intl6x4_t a, intl6x4_t b);

26.7. Appendix C: Nuclei N2 SIMD DSP Additional Instruction 197




Nuclei® RISC-V Instruction Set Architecture Specification

26.7.24 DSMDRS(Signed Multiply Two Halfs and Reverse Subtract)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMDRS Rs2 Rsl1 000 Rd custom-3
0110100 1111011
Syntax:

DSMDRS Rd, Rsl, Rs2

Purpose:

Do two signed 16-bit multiplications from the 32-bit elements of two registers; and then perform a subtraction operation
between the two 32-bit results.

DSMDRS: bottom*bottom - top*top (per 32-bit element)
Description:

This instruction multiplies the top 16-bit content of the 32-bit elements of Rs1 with the top 16-bit content of the 32-bit
elements of Rs2 and then subtracts the result from the result of multiplying the bottom 16-bit content of the 32-bit elements
of Rs1 with the bottom 16-bit content of the 32-bit elements of Rs2.

The subtraction result is written to the corresponding 32-bit element of Rd. The 16-bit contents of multiplication are
treated as signed integers.

Operations:

Rd.W[x] = (Rsl.W[x].H[O®] * Rs2.W[x].H[O®]) - (Rsl.W[x].H[1] * Rs2.W[x].H[1]);

x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dsmdrs(unsigned long long a, unsigned long long b);

int32x2 v_dsmdrs(intl6x4_t a, intl6x4_t b);

26.7.25 DSMXDS(Signed Crossed Multiply Two Halfs and Subtract)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMXDS Rs2 Rsl 000 Rd custom-3
0110101 1111011
Syntax:

DSMXDS Rd, Rsl, Rs2

Purpose:

Do two signed 16-bit multiplications from the 32-bit elements of two registers; and then perform a subtraction operation
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between the two 32-bit results.
DSMDRS: top*bottom - bottom*top (per 32-bit element)
Description:

This instruction multiplies the bottom 16-bit content of the 32-bit elements of Rs1 with the top 16-bit content of the 32-bit
elements of Rs2 and then subtracts the result from the result of multiplying the top 16-bit content of the 32-bit elements
of Rs1 with the bottom 16-bit content of the 32-bit elements of Rs2.

The subtraction result is written to the corresponding 32-bit element of Rd. The 16-bit contents of multiplication are
treated as signed integers.

Operations:

Rd.W[x] = (Rsl.W[x].H[1] * Rs2.W[x].H[O]) - (Rsl.W[x].H[O®] * Rs2.W[x].H[1]);

x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dsmxds(unsigned long long a, unsigned long long b);

int32x2 __v_dsmxds(intl6x4_t a, intl6x4_t b);

26.7.26 DSMBB32(Signed Multiply Bottom Word & Bottom Word)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMBB32 Rs2 Rsl1 000 Rd custom-3
0110110 1111011
Syntax:

DSMBB32.sral4 Rd, Rsl, Rs2

Purpose:

Multiply the signed 32-bit element of a register with the signed 32-bit element of another register and write the 64-bit
result to a third register.

DSMBB32: bottom*bottom
Description:

This instruction multiplies the bottom 32-bit element of Rs1 with the bottom 32-bit element of Rs2. The 64-bit multipli-
cation result is written to Rd. The 32-bit contents of Rs1 and Rs2 are treated as signed integers.

Operations:

res = (Rs1.W[0®] * Rs2.W[0]);

Rd = res;

Exceptions: None
Privilege level: All
Note: None
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Intrinsic functions:

long long __dsmbb32(unsigned long long a, unsigned long long b);

int64_t __v_dsmbb32(int32x2_t a, int32x2_t b);

26.7.27 DSMBB32.sra14(Signed Multiply Bottom Word & Bottom Word with Right Shift

14)
Type: SIMD
Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMBB32.sral4 Rs2 Rsl1 000 Rd custom-3
0110111 1111011
Syntax:

DSMBB32.sral4 Rd, Rsl, Rs2

Purpose:

Multiply the signed 32-bit element of a register with the signed 32-bit element of another register, then right shift 14-
bit,finally write the 64-bit result to a third register.

DSMBB32.sral4: bottom*bottom s>> 14
Description:

This instruction multiplies the bottom 32-bit element of Rs1 with the bottom 32-bit element of Rs2. The 64-bit multipli-
cation result is written to Rd after right shift 14-bit. The 32-bit contents of Rs1 and Rs2 are treated as signed integers.

Operations:

res = (Rs1.W[O] * Rs2.W[O]) s>> 14;

Rd = res;

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dsmbb32.sral4(unsigned long long a, unsigned long long b);

int64_t __v_dsmbb32.sral4(int32x2_t a, int32x2_t b);

26.7.28 DSMBB32.sra32(Signed Multiply Bottom Word & Bottom Word with Right Shift

32)
Type: SIMD
Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMBB32.sra32 Rs2 Rsl1 000 Rd custom-3
0111000 1111011
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Syntax:

DSMBB32.sra32 Rd, Rsl, Rs2

Purpose:

Multiply the signed 32-bit element of a register with the signed 32-bit element of another register, then right shift 14-
bit,finally write the 64-bit result to a third register.

DSMBB32.sra32: bottom*bottom s>> 32
Description:

This instruction multiplies the bottom 32-bit element of Rs1 with the bottom 32-bit element of Rs2. The 64-bit multipli-
cation result is written to Rd after right shift 14-bit. The 32-bit contents of Rs1 and Rs2 are treated as signed integers.

Operations:

res = (Rs1.W[O] * Rs2.W[O]) s>> 32;

Rd = res;

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dsmbb32.sra32(unsigned long long a, unsigned long long b);

int64_t __v_dsmbb32.sra32(int32x2_t a, int32x2_t b);

26.7.29 DSMBT32(Signed Multiply Bottom Word & Top Word)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMBT32 Rs2 Rsl1 000 Rd custom-3
0111001 1111011

Syntax:

DSMBT32 Rd, Rsl, Rs2

Purpose:

Multiply the signed 32-bit element of a register with the signed 32-bit element of another register and write the 64-bit
result to a third register.

DSMBT32: bottom*top
Description:

This instruction multiplies the bottom 32-bit element of Rs1 with the top 32-bit element of Rs2. The 64-bit multiplication
result is written to Rd. The 32-bit contents of Rs1 and Rs2 are treated as signed integers.

Operations:

res = (Rs1.W[0®] * Rs2.W[0]);

Rd = res;

Exceptions: None
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Privilege level: All
Note: None

Intrinsic functions:

long long __dsmbt32(unsigned long long a, unsigned long long b);

int64_t __v_dsmbt32(int32x2_t a, int32x2_t b);

26.7.30 DSMBT32.sra14(Signed Multiply Bottom Word & Top Word with Right Shift 14)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMBT32.sral4 Rs2 Rsl 000 Rd custom-3
0111010 1111011
Syntax:

DSMBT32.sral4d Rd, Rsl, Rs2

Purpose:

Multiply the signed 32-bit element of a register with the signed 32-bit element of another register, then right shift 14-
bit,finally write the 64-bit result to a third register.

DSMBT32.sral4: bottom*bottom s>> 14
Description:

This instruction multiplies the bottom 32-bit element of Rs1 with the top 32-bit element of Rs2. The 64-bit multiplication
result is written to Rd after right shift 14-bit. The 32-bit contents of Rs1 and Rs2 are treated as signed integers.

Operations:

res = (Rs1.W[O] * Rs2.W[O]) s>> 14;

Rd = res;

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dsmbt32.sral4(unsigned long long a, unsigned long long b);

int64_t __v_dsmbt32.sral4(int32x2_t a, int32x2_t b);
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26.7.31 DSMBT32.sra32(Signed Crossed Multiply Two Halfs and Subtract with Right

Shift 32)
Type: SIMD
Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMBT?32.sra32 Rs2 Rsl1 000 Rd custom-3
0111011 1111011

Syntax:

DSMBT32.sra32 Rd, Rsl, Rs2

Purpose:

Multiply the signed 32-bit element of a register with the signed 32-bit element of another register, then right shift 32-
bit,finally write the 64-bit result to a third register.

DSMBT32.sra32: bottom*bottom s>> 32
Description:

This instruction multiplies the bottom 32-bit element of Rs1 with the bottom 32-bit element of Rs2. The 64-bit multipli-
cation result is written to Rd after right shift 32-bit. The 32-bit contents of Rs1 and Rs2 are treated as signed integers.

Operations:

res = (Rs1.W[O] * Rs2.W[O]) s>> 32;

Rd = res;

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dsmbt32.sra32(unsigned long long a, unsigned long long b);

int64_t __v_dsmbt32.sra32(int32x2_t a, int32x2_t b);

26.7.32 DSMTT32(Signed Multiply Top Word & Top Word)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMTT32 Rs2 Rsl 000 Rd custom-3
0111100 1111011

Syntax:

DSMTT32 Rd, Rsl, Rs2

Purpose:

Multiply the signed 32-bit element of a register with the signed 32-bit element of another register and write the 64-bit
result to a third register.

DSMTT32: top*top
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Description:

This instruction multiplies the top 32-bit element of Rs1 with the top 32-bit element of Rs2. The 64-bit multiplication
result is written to Rd. The 32-bit contents of Rs1 and Rs2 are treated as signed integers.

Operations:

res = Rsl1.W[1] * Rs2.W[1];

Rd = res;

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dsmtt32(unsigned long long a, unsigned long long b);

int64_t __v_dsmtt32(int32x2_t a, int32x2_t b);

26.7.33 DSMTT32.sra14(Signed Multiply Top Word & Top Word with Right Shift 14-bit)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMTT32.srald Rs2 Rsl1 000 Rd custom-3
0111101 1111011

Syntax:

DSMTT32.sral4 Rd, Rsl, Rs2

Purpose:

Multiply the signed 32-bit element of a register with the signed 32-bit element of another register,then right shift 14-
bit,finally write the 64-bit result to a third register.

DSMTT32.sral4: top*top s>> 14
Description:

This instruction multiplies the top 32-bit element of Rs1 with the top 32-bit element of Rs2. The 64-bit multiplication
result is written to Rd after right shift 14-bit. The 32-bit contents of Rs1 and Rs2 are treated as signed integers.

Operations:

res = Rsl1.W[1] * Rs2.W[1] >> 14;

Rd = res;

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dsmtt32.sral4(unsigned long long a, unsigned long long b);

int64_t __v_dsmtt32.sral4(int32x2_t a, int32x2_t b);
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26.7.34 DSMTT32.sra32(Signed Multiply Top Word & Top Word with Right Shift 32-bit)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMTT32.sra32 Rs2 Rsl1 000 Rd custom-3
0111110 1111011

Syntax:

DSMTT32.sra32 Rd, Rsl, Rs2

Purpose:

Multiply the signed 32-bit element of a register with the signed 32-bit element of another register,then right shift 32-
bit,finally write the 64-bit result to a third register.

DSMTT32.sra32: top*top s>> 32
Description:

This instruction multiplies the top 32-bit element of Rs1 with the top 32-bit element of Rs2. The 64-bit multiplication
result is written to Rd after right shift 32-bit. The 32-bit contents of Rs1 and Rs2 are treated as signed integers.

Operations:

res = Rs1.W[1] * Rs2.W[1] >> 32;

Rd = res;

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dsmtt32.sra32(unsigned long long a, unsigned long long b);

int64_t __v_dsmtt32.sra32(int32x2_t a, int32x2_t b);

26.7.35 DPKBB32(Pack Two 32-bit Data from Both Bottom Half)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DPKBB32 Rs2 Rsl1 000 Rd custom-3
0111111 1111011

Syntax:

DPKBB32 Rd, Rsl, Rs2

Purpose:

Pack 32-bit data from 64-bit chunks in two registers.

DPKBB32: bottom.bottom

Description:
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This instruction moves Rs1.W[0] to Rd.W[1] and moves Rs2.W[0] to Rd.W]0].

Operations:

Rd = CONCAT(Rs1.W[0®], Rs2.W[0]);

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dpkbb32(unsigned long long a, unsigned long long b);

uint32x2_t __v_dpkbb32(uint32x2_t a, uint32x2_t b);

26.7.36 DPKBT32(Pack Two 32-bit Data from Bottom and Top Half)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DPKBT32 Rs2 Rsl1 000 Rd custom-3
1000000 1111011

Syntax:

DPKBT32 Rd, Rsl, Rs2

Purpose:
Pack 32-bit data from 64-bit chunks in two registers.
DPKBT32: bottom.top
Description:
This instruction moves Rs1.W[0] to Rd.W|[1] and moves Rs2.W[1] to Rd.W[O0].

Operations:

Rd = CONCAT(Rs1.W[0®], Rs2.W[1]);

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dpkbt32(unsigned long long a, unsigned long long b);

uint32x2_t __v_dpkbt32(uint32x2_t a, uint32x2_t b);
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26.7.37 DPKTT32(Pack Two 32-bit Data from Both Top Half)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DPKTT32 Rs2 Rsl1 000 Rd custom-3
1000001 1111011

Syntax:

DPKTT32 Rd, Rsl, Rs2

Purpose:
Pack 32-bit data from 64-bit chunks in two registers.
DPKTT32: top.top
Description:
This instruction moves Rs1.W[1] to Rd.W[0] and moves Rs2.W[1] to Rd.W]0].

Operations:

Rd = CONCAT(Rs1.W[1], Rs2.W[1]);

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dpktt32(unsigned long long a, unsigned long long b);

uint32x2_t __v_dpktt32(uint32x2_t a, uint32x2_t b);

26.7.38 DPKTB32(Pack Two 32-bit Data from Top and Bottom Half)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DPKTB32 Rs2 Rsl1 000 Rd custom-3
1000010 1111011

Syntax:

DPKTB32 Rd, Rsl, Rs2

Purpose:
Pack 32-bit data from 64-bit chunks in two registers.
DPKTB32: top.bottom
Description:
This instruction moves Rs1.W|[1] to Rd.W|[1] and moves Rs2.W[0] to Rd.W[O0].

Operations:
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Rd = CONCAT(Rs1.W[1], Rs2.W[0]);

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dpktb32(unsigned long long a, unsigned long long b);

uint32x2_t __v_dpktb32(uint32x2_t a, uint32x2_t b);

26.7.39 DPKTB16(Pack Two 16-bit Data from Both Bottom Half)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DPKTB16 Rs2 Rsl1 000 Rd custom-3
1000011 1111011

Syntax:

DPKTB16 Rd, Rsl, Rs2

Purpose:
Pack 16-bit data from 32-bit chunks in two registers.
DPKTB16: top.bottom
Description:
This instruction moves Rs1.W[x] [31:16] to Rd.W[x] [31:16] and moves Rs2.W[x] [15:0] to Rd.W[x] [15:0].

Operations:

RA.W[x][31:0] = CONCAT(Rs1.W[x][31:16], Rs2.W[x][15:0]);

x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dpktbl6(unsigned long long a, unsigned long long b);

uintl16x4_t __v_dpktbl16(uintl6x4_t a, uintl6x4_t b);
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26.7.40 DPKBB16(Pack Two 16-bit Data from Both Bottom Half)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DPKBBI16 Rs2 Rsl 000 Rd custom-3
1000100 1111011

Syntax:

DPKBB16 Rd, Rsl, Rs2

Purpose:
Pack 16-bit data from 32-bit chunks in two registers.
PKBB16: bottom.bottom
Description:
This instruction moves Rs1.W[x][15:0] to Rd.W[x][31:16] and moves Rs2.W|[x] [15:0] to Rd.W|[x] [15:0].

Operations:

RA.W[x][31:0] = CONCAT(Rs1.W[x][15:0], Rs2.W[x][15:0]);

x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dpkbbl6(unsigned long long a, unsigned long long b);

uintl6x4_t v_dpkbb16(uintl16x4_t a, uintl6x4_t b);

26.7.41 DPKBT16(Pack Two 16-bit Data from Bottom and Top Half)

Type: SIMD

Format:

31-25

24 - 20

19-15

14-12

11-7

6-0

DPKBT16
1000101

Rs2

Rsl1

000

Rd

custom-3
1111011

Syntax:

PKBT16 Rd, Rsl, Rs2

Purpose:

Pack 16-bit data from 32-bit chunks in two registers.
PKBT16: bottom.top

Description:

This instruction moves Rs1.W[x] [15:0] to RA.W[x] [31:16] and moves Rs2.W[x] [31:16] to RA.W[x] [15:0].

26.7. Appendix C: Nuclei N2 SIMD DSP Additional Instruction

209




Nuclei® RISC-V Instruction Set Architecture Specification

Operations:

RdA.W[x][31:0] = CONCAT(Rs1.W[x][15:0], Rs2.W[x]1[31:16]);
x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dpkbtl6(unsigned long long a, unsigned long long b);

uintl6x4_t __v_dpkbtl6(uintl6x4_t a, uintl6x4_t b);

26.7.42 DPKTT16(Pack Two 16-bit Data from Both Top Half)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DPKTT16 Rs2 Rsl1 000 Rd custom-3
1000110 1111011

Syntax:

DPKTT16 Rd, Rsl, Rs2

Purpose:
Pack 16-bit data from 32-bit chunks in two registers.
PKTT16: top.top
Description:
This instruction moves Rs1.W|[x] [31:16] to RdA.W|[x] [31:16] and moves Rs2.W[x] [31:16] to Rd.W[x] [15:0].

Operations:

Rd.W[x][31:0] = CONCAT(Rs1l.W[x][31:16], Rs2.W[x][31:16]);

x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dpkttl6(unsigned long long a, unsigned long long b);

uintl6x4_t __v_dpkttl6(uintl6x4_t a, uintl6x4_t b);
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26.7.43 DSRA16(SIMD 16-bit Shift Right Arithmetic)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSRA16 Rs2 Rsl 000 Rd custom-3
1000111 1111011
Syntax:

DSRA16 Rd, Rsl, Rs2

Purpose:
Do 16-bit element arithmetic right shift operations simultaneously. The shift amount is a variable from a GPR.
Description:

The 16-bit data elements in Rs1 are right-shifted arithmetically, that is, the shifted out bits are filled with the sign-bit of
the data elements. The shift amount is specified by the low-order 4-bits of the value in the Rs2 register. And the results
are written to Rd.

Operations:

sa = Rs2[3:0];
if (sa !'=0)
{
Rd.H[x] = SE16(Rsl.H[x][15:sa]);
} else {
Rd = Rsl;
}

x=3...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dsral6(unsigned long long a, unsigned long b);

int16x4_t __v_dsral6(intl6x4_t a, unsigned int b);
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26.7.44 DADD16(16-bit Addition)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DADDI16 Rs2 Rsl 000 Rd custom-3
1001000 1111011
Syntax:

DADD16 Rd, Rsl, Rs2

Purpose:
Do 16-bit integer element additions simultaneously.
Description:

This instruction adds the 16-bit unsigned integer elements in Rs1 with the 16-bit unsigned integer elements in Rs2. And
the results are written to Rd.

Operations:

Rd.H[x] = Rsl.H[x] + Rs2.H[x];

x=3...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __daddl6(unsigned long long a, unsigned long long b);

intl6x4_t v_daddl6(intl16x4_t a, intl6x4_t b);

26.7.45 DADD32(32-bit Addition)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DADD32 Rs2 Rsl 000 Rd custom-3
1001001 1111011
Syntax:

DADD32 Rd, Rsl, Rs2

Purpose:
Do 32-bit integer element additions simultaneously.
Description:

This instruction adds the 32-bit integer elements in Rs1 with the 32-bit integer elements in Rs2, and then writes the 32-bit
element results to Rd.

Operations:
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Rd.W[x] = Rsl.W[x] + Rs2.W[x];

x=1...0

Exceptions: None
Privilege level: All
Note: This instruction can be used for either signed or unsigned addition.

Intrinsic functions:

unsigned long long __dadd32(unsigned long long a, unsigned long long b);

int32x2_t v_dadd32(int32x2_t a, int32x2_t b);

26.7.46 DSMBB16(Signed Multiply Bottom Half & Bottom Half)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMBBI16 Rs2 Rsl 000 Rd custom-3
1001010 1111011
Syntax:

DSMBB16 Rd, Rsl, Rs2

Purpose:

Multiply the signed 16-bit content of the 32-bit elements of a register with the signed 16-bit content of the 32-bit elements
of another register and write the result to a third register.

DSMBB16: W[x].bottom*W|[x].bottom
Description:

For the “DSMBB16” instruction, it multiplies the bottom 16-bit content of the 32-bit elements of Rsl with the bottom
16-bit content of the 32-bit elements of Rs2.

The multiplication results are written to Rd. The 16-bit contents of Rs1 and Rs2 are treated as signed integers.

Operations:

Rd.W[x] = Rsl.W[x].H[O] * Rs2.W[x].H[O];

x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dsmbbl6(unsigned long long a, unsigned long long b);

int32x2_t __v_dsmbb16(intl6x4_t a, intl6x4_t b);
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26.7.47 DSMBT16(Signed Multiply Bottom Half & Top Half)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMBT16 Rs2 Rsl 000 Rd custom-3
1001011 1111011

Syntax:

DSMBT16 Rd, Rsl, Rs2

Purpose:

Multiply the signed 16-bit content of the 32-bit elements of a register with the signed 16-bit content of the 32-bit elements
of another register and write the result to a third register.

DSMBT16:W[x].bottom*W|[x].top
Description:

For the “DSMBT16” instruction, it multiplies the bottom 16-bit content of the 32-bit elements of Rs1 with the top 16-bit
content of the 32-bit elements of Rs2.

The multiplication results are written to Rd. The 16-bit contents of Rs1 and Rs2 are treated as signed integers.

Operations:

Rd.W[x] = Rsl.W[x].H[®] * Rs2.W[x].H[1];

x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dsmbtl6(unsigned long long a, unsigned long long b);

int32x2_t __v_dsmbtl6(intl6x4_t a, intl6x4_t b);

26.7.48 DSMTT16(Signed Multiply Top Half & Top Half)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMTT16 Rs2 Rsl1 000 Rd custom-3
1001100 1111011

Syntax:

DSMTT16 Rd, Rsl, Rs2

Purpose:

Multiply the signed 16-bit content of the 32-bit elements of a register with the signed 16-bit content of the 32-bit elements
of another register and write the result to a third register.
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DSMTTI16: W[x].top * W[x].top
Description:

For the “DSMBB16” instruction, it multiplies the top 16-bit content of the 32-bit elements of Rs1 with the top 16-bit
content of the 32-bit elements of Rs2.

The multiplication results are written to Rd. The 16-bit contents of Rs1 and Rs2 are treated as signed integers.

Operations:

Rd.W[x] = Rsl.W[x].H[1] * Rs2.W[x].H[1];

x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dsmttl6(unsigned long long a, unsigned long long b);

int32x2_t v_dsmttl6(intl6x4_t a, intl6x4_t b);

26.7.49 DRCRSA16(16-bit Signed Halving Cross Subtraction & Addition)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DRCRSA16 Rs2 Rsl1 000 Rd custom-3
1001101 1111011
Syntax:

DRCRSA16 Rd, Rsl, Rs2

Purpose:

Do 16-bit signed integer element subtraction and 16-bit signed integer element addition in a 32-bit chunk simultaneously.
Operands are from crossed positions in 32-bit chunks. The results are halved to avoid overflow or saturation.

Description:

This instruction subtracts the 16-bit signed integer in [31:16] of 32-bit chunks in Rs1 with the 16-bit signed integer in
[15:0] of 32-bit chunks in Rs2, and adds the 16-bit signed integer in [31:16] of 32-bit chunks in Rs2 from the 16-bit signed
integer in [15:0] of 32-bit chunks in Rs1. The element results are first logically right-shifted by 1 bit and then written to
[31:16] of 32- bit chunks in Rd and [15:0] of 32-bit chunks in Rd.

Operations:

RA.W[x][31:16] = (Rs1.W[x][31:16] - Rs2.W[x][15:0]) s>> 1;
RA.W[x][15:0] = (Rs1.W[x][15:0] + Rs2.W[x][31:16]) s>> 1;

x=1...0

Exceptions: None
Privilege level: All
Note: None
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Intrinsic functions:

unsigned long long __drcrsal6(unsigned long long a, unsigned long long b);

intl6x4_t __v_drcrsal6(intl6x4_t a, intl6x4_t b);

26.7.50 DRCRSA32(32-bit Signed Halving Cross Subtraction & Addition)

Type: SIMD

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0
DRCRSA32 Rs2 Rsl 000 Rd custom-3
1011110 1111011
Syntax:

DRCRSA32 Rd, Rsl, Rs2

Purpose:

Do 32-bit signed integer element subtraction and 32-bit signed integer element addition in a 64-bit chunk simultaneously.
Operands are from crossed 32-bit elements. The results are halved to avoid overflow or saturation.

Description:

This instruction subtracts the 32-bit signed integer element in [63:32] of Rsl with the 32-bit signed integer element in
[31:0] of Rs2, and adds the 32-bit signed integer element in [63:32] of Rs2 from the 32-bit signed integer element in [31:0]
of Rs1. The element results are first arithmetically right-shifted by 1 bit and then written to [63:32] of Rd for addition and
[31:0] of Rd for subtraction.

Operations:

Rd.W[1]

(Rs1.W[1] - Rs2.W[O]) s>> 1;

Rd.W[O]

(Rs1.W[O®] + Rs2.W[1]) s>> 1;

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __drcrsa32(unsigned long long a, unsigned long long b);

int32x2_t __v_drcrsa32(int32x2_t a, int32x2_t b);

26.7.51 DRCRAS16(16-bit Signed Halving Cross Addition & Subtraction)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DRCRAS16 Rs2 Rsl 000 Rd custom-3
1001110 1111011

Syntax:
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DRCRAS16 Rd, Rsl, Rs2

Purpose:

Do 16-bit signed integer element subtraction and 16-bit signed integer element addition in a 32-bit chunk simultaneously.
Operands are from crossed positions in 32-bit chunks. The results are halved to avoid overflow or saturation.

Description:

This instruction adds the 16-bit unsigned integer in [31:16] of 32-bit chunks in Rs1 with the 16-bit unsigned integer in
[15:0] of 32-bit chunks in Rs2, and subtracts the 16-bit unsigned integer in [31:16] of 32-bit chunks in Rs2 from the 16-bit
unsigned integer in [15:0] of 32-bit chunks in Rs1. The element results are first logically right-shifted by 1 bit and then
written to [31:16] of 32-bit chunks in Rd and [15:0] of 32-bit chunks in Rd.

Operations:

RA.W[x]1[31:16] = (Rs1.W[x][31:16] + Rs2.W[x][15:0]) s>> 1;
RA.W[x][15:0] = (Rs1.W[x][15:0] - Rs2.W[x][31:16]) s>> 1;

x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __drcrasl6(unsigned long long a, unsigned long long b);

intl6x4_t v_drcrasl6(intl6x4_t a, intl6x4_t b);

26.7.52 DRCRAS32(32-bit Signed Cross Addition & Subtraction)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DRCRAS32 Rs2 Rsl1 000 Rd custom-3
1110010 1111011
Syntax:

DRCRAS32 Rd, Rsl, Rs2

Purpose:

Do 32-bit signed integer element subtraction and 32-bit signed integer element addition in a 64-bit chunk simultaneously.
Operands are from crossed 32-bit elements. The results are halved to avoid overflow or saturation.

Description:

This instruction add the 32-bit signed integer element in [63:32] of Rs1 with the 32-bit signed integer element in [31:0] of
Rs2, and subtract the 32-bit signed integer element in [63:32] of Rs2 from the 32-bit signed integer element in [31:0] of
Rsl. The element results are first arithmetically right-shifted by 1 bit and then written to [63:32] of Rd for addition and
[31:0] of Rd for subtraction.

Operations:
RA.W[1] = (Rs1.W[1] + Rs2.W[®]) s>> 1;
RA.W[O] = (Rsl.W[®] - Rs2.W[1]) s>> 1;
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Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __drcrsa32(unsigned long long a, unsigned long long b);

int32x2_t __v_drcrsa32(int32x2_t a, int32x2_t b);

26.7.53 DKCRAS16(16-bit Signed Saturating Cross Addition & Subtraction)

Type: SIMD

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0
DKCRASI16 Rs2 Rsl 000 Rd custom-3
1010000 1111011

Syntax:

DKCRAS16 Rd, Rsl, Rs2

Purpose:

Do 16-bit signed integer element saturating addition and 16-bit signed integer element saturating subtraction in a 32-bit
chunk simultaneously. Operands are from crossed positions in 32-bit chunks.

Description:

This instruction adds the 16-bit signed integer element in [31:16] of 32-bit chunks in Rs1 with the 16-bit signed integer
element in [15:0] of 32-bit chunks in Rs2; at the same time, it subtracts the 16-bit signed integer element in [31:16] of
32-bit chunks in Rs2 from the 16-bit signed integer element in [15:0] of 32-bit chunks in Rs1.

If any of the results are beyond the Q15 number range (-2'3 <= Q15 <= 2!3-1), they are saturated to the range and the OV
bit is set to 1. The saturated results are written to [31:16] of 32-bit chunks in Rd for addition and [15:0] of 32-bit chunks
in Rd for subtraction.

Operations:

resl = Rsl1.W[x][31:16] + Rs2.W[x][15:0];

res2

Rs1.W[x][15:0] - Rs2.W[x][31:16];
for (res in [resl, res2]) {
if (res > (2215)-1) {
res = (2715)-1;
oV = 1;
} else if (res < -2415) {
res = -2715;

oV = 1;

(continues on next page)
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}
Rd.W[x][31:16] = resl;
RA.W[x][15:0] = res2;

x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkcrasl6(unsigned long long a, unsigned long long b);

intl6x4_t v_dkcrasl6(intl6x4_t a, intl6ex4_t b);

26.7.54 DKCRSA16(16-bit Signed Saturating Cross Subtraction & Addition)

Type: SIMD

Format:

31-25 24 - 20 19-15 14-12 11-7 6-0
DKCRSA16 Rs2 Rsl 000 Rd custom-3
1001111 1111011
Syntax:

DKCRSA16 Rd, Rsl, Rs2

Purpose:

Do 16-bit signed integer element saturating subtraction and 16-bit signed integer element saturating addition in a 32-bit
chunk simultaneously. Operands are from crossed positions in 32-bit chunks.

Description:

This instruction subtracts the 16-bit signed integer element in [15:0] of 32-bit chunks in Rs2 from the 16-bit signed integer
element in [31:16] of 32-bit chunks in Rs1; at the same time, it adds the 16-bit signed integer element in [31:16] of 32-bit
chunks in Rs2 with the 16-bit signed integer element in [15:0] of 32-bit chunks in Rs1.

If any of the results are beyond the Q15 number range (-2'5 <= Q15 <= 2!3-1), they are saturated to the range and the OV
bit is set to 1. The saturated results are written to [31:16] of 32-bit chunks in Rd for subtraction and [15:0] of 32-bit chunks
in Rd for addition.

Operations:

resl = Rsl1.W[x][31:16] - Rs2.W[x][15:0];

res2

Rs1.W[x][15:0] + Rs2.W[x][31:16];
for (res in [resl, res2]) {

if (res > (2#15)-1) {
res = (2415)-1;

oV = 1;

(continues on next page)
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} else if (res < -2415) {

res = -2/15;

oV = 1;

}
Rd.W[x][31:16] = resl;
RdA.W[x][15:0] = res2;

x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkcrsal6(unsigned long long a, unsigned long long b);

intl6x4_t __v_dkcrsal6(intl6x4_t a, intl6x4_t b);

26.7.55 DRSUB16(16-bit Signed Halving Subtraction)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DRSUBI16 Rs2 Rsl1 000 Rd custom-3
1010001 1111011

Syntax:

DRSUB16 Rd, Rsl, Rs2

Purpose:

Do 16-bit signed integer element subtractions simultaneously. The results are halved to avoid overflow or saturation.

Description:

This instruction subtracts the 16-bit signed integer elements in Rs2 from the 16-bit signed integer elements in Rs1. The

results are first arithmetically right-shifted by 1 bit and then written to Rd.

Operations:

Rd.H[x] = (Rsl.H[x] - Rs2.H[x]) s>> 1;

x=3...0

Exceptions: None
Privilege level: All
Note: None
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Intrinsic functions:

unsigned long long __drsubl6(unsigned long long a, unsigned long long b);

intl6x4_t __v_drsubl6(intl6x4_t a, intl6x4_t b);

26.7.56 DSTSA32(32-bit Straight Subtraction & Addition)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSTSA32 Rs2 Rsl1 000 Rd custom-3
1010011 1111011
Syntax:

DSTSA32 Rd, Rsl, Rs2

Purpose:

Do 32-bit integer element subtraction and 32-bit integer element addition in a 64-bit chunk simultaneously. Operands are
from corresponding 32-bit elements.

Description:

This instruction subtracts the 32-bit integer element in [63:32] of Rs2 from the 32-bit integer element in [63:32] of Rs1,
and writes the result to [63:32] of Rd; at the same time, it adds the 32-bit integer element in [31:0] of Rs1 with the 32-bit
integer element in [31:0] of Rs2, and writes the result to [31:0] of Rd.

Operations:

Rd.W[1] = Rsl1l.W[1] - Rs2.W[1];

Rd.W[O] = Rs1.W[O®] + Rs2.W[O];

Exceptions: None
Privilege level: All
Note: This instruction can be used for either signed or unsigned operations

Intrinsic functions:

unsigned long long __dstsa32(unsigned long long a, unsigned long long b);

uint32x2_t v_dstsa32(uint32x2_t a, uint32x2_t b);

26.7.57 DSTAS32(32-bit Straight Addition & Subtraction)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSTAS32 Rs2 Rsl1 000 Rd custom-3
1010100 1111011
Syntax:
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DSTAS32 Rd, Rsl, Rs2

Purpose:

Do 32-bit integer element subtraction and 32-bit integer element addition in a 64-bit chunk simultaneously. Operands are
from corresponding 32-bit elements.

Description:

This instruction adds the 32-bit integer element in [63:32] of Rs2 from the 32-bit integer element in [63:32] of Rs1, and
writes the result to [63:32] of Rd; at the same time, it subtracts the 32-bit integer element in [31:0] of Rs1 with the 32-bit
integer element in [31:0] of Rs2, and writes the result to [31:0] of Rd.

Operations:

Rd.W[1] = Rs1.W[1] + Rs2.W[1];

Rd.W[0] Rs1.W[O] - Rs2.W[O];

Exceptions: None
Privilege level: All
Note: This instruction can be used for either signed or unsigned operations

Intrinsic functions:

unsigned long long __dstas32(unsigned long long a, unsigned long long b);

uint32x2_t __v_dstas32(uint32x2_t a, uint32x2_t b);

26.7.58 DKCRSA32(32-bit Signed Saturating Cross Subtraction & Addition)

Type: SIMD

Format:
31-25 24 -20 19-15 14-12 11-7 6-0
DKCRSA32 Rs2 Rsl 000 Rd custom-3
1010110 1111011

Syntax:

DKCRSA32 Rd, Rsl, Rs2

Purpose:

Do 32-bit signed integer element saturating subtraction and 32-bit signed integer element saturating addition in a 64-bit
chunk simultaneously. Operands are from crossed 32-bit elements.

Description:

This instruction subtracts the 32-bit integer element in [31:0] of Rs2 from the 32-bit integer element in [63:32] of Rs1; at
the same time, it adds the 32-bit integer element in [31:0] of Rs1 with the 32-bit integer element in [63:32] of Rs2. If any
of the results are beyond the Q31 number range (-23! <= Q31 <= 23!-1), they are saturated to the range and the OV bit is
set to 1. The saturated results are written to [63:32] of Rd for subtraction and [31:0] of Rd for addition.

Operations:

res[1]

Rs1.W[1] - Rs2.W[0];
res[0] = Rs1.W[O] + Rs2.W[1];

if (res[x] > (2*3D)-1) {

(continues on next page)

26.7. Appendix C: Nuclei N2 SIMD DSP Additional Instruction 222




Nuclei® RISC-V Instruction Set Architecture Specification

(continued from previous page)

res[x] = (2431)-1;
ov = 1;
} else if (res < -2431) {

res[x] = -2231;

ov = 1;
}
Rd.W[1] = res[1];
RdA.W[O] = res[0];
x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkcrsa32(unsigned long long a, unsigned long long b);

int32x2_t v_dkcrsa32(int32x2_t a, int32x2_t b);

26.7.59 DKCRAS32(32-bit Signed Saturating Cross Addition & Subtraction)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKCRAS32 Rs2 Rsl 000 Rd custom-3
1010101 1111011
Syntax:

DKCRAS32 Rd, Rsl, Rs2

Purpose:

Do 32-bit signed integer element saturating subtraction and 32-bit signed integer element saturating addition in a 64-bit
chunk simultaneously. Operands are from crossed 32-bit elements.

Description:

This instruction adds the 32-bit integer element in [31:0] of Rs2 from the 32-bit integer element in [63:32] of Rs1; at the
same time, it subtracts the 32-bit integer element in [31:0] of Rs1 with the 32-bit integer element in [63:32] of Rs2. If any
of the results are beyond the Q31 number range (-23! <= Q31 <= 2%!-1), they are saturated to the range and the OV bit is
set to 1. The saturated results are written to [63:32] of Rd for subtraction and [31:0] of Rd for addition.

Operations:

res[1] = Rsl.W[1] + Rs2.W[O];

(continues on next page)
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res[0®] = Rs1.W[O®] - Rs2.W[1];
if (res[x] > (2431)-1) {
res[x] = (2731)-1;
ov = 1;
} else if (res < -2231) {
res[x] = -2731;
ov = 1;

}

RA.W[1] = res[1];

Rd.W[O] res[0];

x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkcras32(unsigned long long a, unsigned long long b);

int32x2_t __v_dkcras32(int32x2_t a, int32x2_t b);

26.7.60 DCRSA32(32-bit Cross Subtraction & Addition)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DCRSA32 Rs2 Rsl1 000 Rd custom-3
1010111 1111011

Syntax:

DCRSA32 Rd, Rsl, Rs2

Purpose:

Do 32-bit integer element subtraction and 32-bit integer element addition in a 64-bit chunk simultaneously. Operands are
from crossed 32-bit elements.

Description:

This instruction subtracts the 32-bit integer element in [63:32] of Rs1 with the 32-bit integer element in [31:0] of Rs2, and
writes the result to [63:32] of Rd; at the same time, it adds the 32-bit integer element in [63:32] of Rs2 from the 32-bit
integer element in [31:0] of Rs1, and writes the result to [31:0] of Rd.

Operations:
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res[1] = Rs1.W[1] - Rs2.W[O];

res[0]

Rs1.W[®] + Rs2.W[1];

Exceptions: None
Privilege level: All
Note: This instruction can be used for either signed or unsigned operations.

Intrinsic functions:

unsigned long long __dcrsa32(unsigned long long a, unsigned long long b);

int32x2_t v_dcrsa32(int32x2_t a, int32x2_t b);

26.7.61 DCRAS32(32-bit Cross Addition & Subtraction)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DCRAS32 Rs2 Rsl 000 Rd custom-3
1011000 1111011
Syntax:

DCRAS32 Rd, Rsl, Rs2

Purpose:

Do 32-bit integer element subtraction and 32-bit integer element addition in a 64-bit chunk simultaneously. Operands are
from crossed 32-bit elements.

Description:

This instruction subtracts the 32-bit integer element in [63:32] of Rs1 with the 32-bit integer element in [31:0] of Rs2, and
writes the result to [63:32] of Rd; at the same time, it adds the 32-bit integer element in [63:32] of Rs2 from the 32-bit
integer element in [31:0] of Rs1, and writes the result to [31:0] of Rd.

Operations:

res[1] Rs1.W[1] + Rs2.W[0®];

res[0] Rs1.W[®] - Rs2.W[1];

Exceptions: None
Privilege level: All
Note: This instruction can be used for either signed or unsigned operations.

Intrinsic functions:

unsigned long long __dcras32(unsigned long long a, unsigned long long b);

int32x2_t __v_dcras32(int32x2_t a, int32x2_t b);
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26.7.62 DKSTSA16(16-bit Signed Saturating Straight Subtraction & Addition)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKSTSA16 Rs2 Rsl 000 Rd custom-3
1011001 1111011
Syntax:

DKSTSA16 Rd, Rsl, Rs2

Purpose:

Do 16-bit signed integer element saturating subtraction and 16-bit signed integer element saturating addition in a 32-bit
chunk simultaneously. Operands are from corresponding positions in 32-bit chunks.

Description:

This instruction subtracts the 16-bit signed integer element in [31:16] of 32-bit chunks in Rs2 from the 16-bit signed integer
element in [31:16] of 32-bit chunks in Rs1; at the same time, it adds the 16-bit signed integer element in [15:0] of 32-bit
chunks in Rs2 with the 16-bit signed integer element in [15:0] of 32-bit chunks in Rs1.

If any of the results are beyond the Q15 number range (-2' <= Q15 <= 213-1), they are saturated to the range and the OV
bit is set to 1. The saturated results are written to [31:16] of 32-bit chunks in Rd for subtraction and [15:0] of 32-bit chunks
in Rd for addition.

Operations:

resl = Rsl1.W[x][31:16] - Rs2.W[x][31:16];

res2 Rs1.W[x][15:0] + Rs2.W[x][15:0];
for (res in [resl, res2]) {
if (res > (2715)-1) {
res = (2715)-1;
oV = 1;
} else if (res < -2#15) {

res = -2/715;

oV = 1;

}
Rd.W[x][31:16] = resl;
RA.W[x][15:0] = res2;

x=1...0

Exceptions: None
Privilege level: All
Note: None
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Intrinsic functions:

unsigned long long __dkstsal6(unsigned long long a, unsigned long long b);

intl6x4_t __v_dkstsal6(intl6x4_t a, intl6x4_t b);

26.7.63 DKSTAS16(16-bit Signed Saturating Straight Addition & Subtraction)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKSTAS16 Rs2 Rsl1 000 Rd custom-3
1011010 1111011
Syntax:

DKSTAS16 Rd, Rsl, Rs2

Purpose:

Do 16-bit signed integer element saturating subtraction and 16-bit signed integer element saturating addition in a 32-bit
chunk simultaneously. Operands are from corresponding positions in 32-bit chunks.

Description:

This instruction adds the 16-bit signed integer element in [31:16] of 32-bit chunks in Rs1 with the 16-bit signed integer
element in [31:16] of 32-bit chunks in Rs2; at the same time, it subtracts the 16-bit signed integer element in [15:0] of
32-bit chunks in Rs2 from the 16-bit signed integer element in [15:0] of 32-bit chunks in Rs1.

If any of the results are beyond the Q15 number range (-2'> <= Q15 <= 2'3-1), they are saturated to the range and the OV
bit is set to 1. The saturated results are written to [31:16] of 32-bit chunks in Rd for subtraction and [15:0] of 32-bit chunks
in Rd for addition.

Operations:

resl = Rsl1.W[x][31:16] + Rs2.W[x][31:16];

res2

Rs1.W[x][15:0] - Rs2.W[x][15:0];
for (res in [resl, res2]) {
if (res > (2715)-1) {
res = (2715)-1;
ov = 1;
} else if (res < -2#15) {
res = -2A15;

oV = 1;

}
Rd.W[x][31:16] = resl;

RA.W[x][15:0] = res2;

(continues on next page)
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x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkstasl6(unsigned long long a, unsigned long long b);

intl6x4_t v_dkstasl6(intl6x4_t a, intl6x4_t b);

26.7.64 DSCLIP8(8-bit Signed Saturation and Clip)

Type: SIMD

Format:
31-25 24 - 23 22 - 20 19-15 14-12 11-7 6-0
DSCLIP8 00 imm3u[2:0] | Rsl 000 Rd custom-3
1011011 1111011
Syntax:

DSCLIP8 Rd, Rsl, imm3u[2:0]

Purpose:
Limit the 8-bit signed integer elements of a register into a signed range simultaneously.
Description:

This instruction limits the 8-bit signed integer elements stored in Rsl into a signed integer range between -2™™3 and
2imm3u_{ and writes the limited results to Rd. For example, if imm3u is 3, the 8-bit input values should be saturated
between 7 and -8. If saturation is performed, set OV bit to 1.

Operations:

src = Rsl.B[x];
if (src > (2*imm3u)-1) {
src = (2Aimm3u)-1;
oV = 1;
} else if (src < -2Aimm3u) {
src = -2Aimm3u;
ov = 1;
}
Rd.B[x] = src

x=7...0

Exceptions: None
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Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dsclip8(unsigned long long a, unsigned long b);

int8x8_t __v_dsclip8(int8x8_t a, unsigned long b);

26.7.65 DSCLIP16(16-bit Signed Saturation and Clip)

Type: SIMD

Format:
31-25 24 23-20 19-15 14-12 11-7 6-0
DSCLIP16 0 imm4u[3:0] | Rsl 000 Rd custom-3
1011100 1111011
Syntax:

DSCLIP16 Rd, Rsl, imm4u[3:0]

Purpose:
Limit the 16-bit signed integer elements of a register into a signed range simultaneously.
Description:

This instruction limits the 16-bit signed integer elements stored in Rs1 into a signed integer range between -2™™* and
2imm4u_1 - and writes the limited results to Rd. For example, if imm4u is 3, the 16-bit input values should be saturated
between 7 and -8. If saturation is performed, set OV bit to 1.

Operations:

src = Rsl.H[x];
if (src > (2*imm4u)-1) {
src = (2*imm4u)-1;
ov = 1;
} else if (src < -2Aimm4u) {
src = -2*imm4u;
oV = 1;
3
Rd.H[x] = src

x=3...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:
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unsigned long long __dsclipl6(unsigned long long a, unsigned long b);

int16x4_t __v_dsclipl6(intl16x4_t a, unsigned long b);

26.7.66 DSCLIP32 (32-bit Signed Saturation and Clip)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSCLIP32 imm5u[4:0] | Rsl 000 Rd custom-3
1011101 1111011
Syntax:

DSCLIP32 Rd, Rsl, imm5u[4:0]

Purpose:
Limit the 32-bit signed integer elements of a register into a signed range simultaneously.
Description:

This instruction limits the 32-bit signed integer elements stored in Rs1 into a signed integer range between -2™™" and
2immSu_{ - and writes the limited results to Rd. For example, if imm5u is 3, the 32-bit input values should be saturated
between 7 and -8. If saturation is performed, set OV bit to 1.

Operations:

src = Rsl.W[x];

if (src > (2*imm5u)-1) {
src = (2Aimm5u)-1;
oV = 1;

} else if (src < -2Aimm5u) {

src = -2Aimm5u;
oV = 1;
}
Rd.W[x] = src
x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dsclip32(unsigned long long a, unsigned long b);

int32x2_t __v_dsclip32(int32x2_t a, unsigned long b);

26.7. Appendix C: Nuclei N2 SIMD DSP Additional Instruction 230




Nuclei® RISC-V Instruction Set Architecture Specification

26.7.67 DRSUB32 (32-bit Signed Halving Subtraction)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DRSUB32 Rs2 Rsl1 000 Rd custom-3
1010010 1111011
Syntax:

DRSUB32 Rd, Rsl, Rs2

Purpose:
Do 32-bit signed integer element subtractions simultaneously. The results are halved to avoid overflow or saturation.
Description:

This instruction subtracts the 32-bit signed integer elements in Rs2 from the 32-bit signed integer elements in Rs1. The
results are first arithmetically right-shifted by 1 bit and then written to Rd.

Operations:

RA.W[x] = (Rsl.W[x] - Rs2.W[x]) s>> 1;

x=1...0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __drsub32(unsigned long long a, unsigned long long b);

int32x2_t v_drsub32(int32x2_t a, int32x2_t b);

26.7.68 DPACKS32 (SIMD Pack Two 32-bit Data To 64-bit)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DPACK32 Rs2 Rsl 000 Rd custom-3
1100110 1111011
Syntax:

DPACK32 Rd, Rsl, Rs2

Purpose:

Pack two 32-bit datas which from two registers into a 64-bit data.

Description:

This instruction moves 32-bit Rs1 to Rd.W[1] and moves 32-bit Rs2 to Rd.W[O0].

Operations:
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Rd = CONCAT(Rs1l.W , Rs2.W);

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dpack32(signed long a, signed long b);

int32x2_t __v_dpack32(int32_t a, int32_t b);

26.7.69 DSUNPKD810,DSUNPKD820,DSUNPKD830,DSUNPKD831,DSUNPKD832
26.7.69.1 DSUNPKD®810 (Signed Unpacking Bytes 1 & 0)
26.7.69.2 DSUNPKDB820 (Sighed Unpacking Bytes 2 & 0)
26.7.69.3 DSUNPKDB830 (Signed Unpacking Bytes 3 & 0)
26.7.69.4 DSUNPKDB831 (Sighed Unpacking Bytes 3 & 1)

26.7.69.5 DSUNPKDB832 (Signed Unpacking Bytes 3 & 2)

Type: SIMD

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0
DSUNPKDS xy XXXXX Rsl 000 Rd custom-3
0000110 1111011
Xy XXXXX
10 00100
20 00101
30 00110
31 00111
32 01000

Syntax:

DSUNPKD8xy Rd, Rsl
xy = {10, 20, 30, 31, 32}

Purpose:
Unpack byte x and byte y of 32-bit chunks in a register into two 16-bit signed halfwordsof 32-bit chunks in a register.
Description:

For the “DSUNPKD8xy” instruction, it unpacks byte x and byte y of 32-bit chunks in Rs1 into two 16-bit signed halfwords
and writes the results to the top part and the bottom part of 32-bit chunks in Rd.

Operations:

Rd.W[m].H[1] SE16(Rs1.W[m].B[x])
Rd.W[m].H[O] SE16(Rsl.W[m].B[y])
//DSUNPKD810, x=1,y=0

(continues on next page)
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//DSUNPKD820, x=2,y=0
//DSUNPKD830, x=3,y=0
//DSUNPKD831, x=3,y=1
//DSUNPKD832, x=3,y=2

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

DSUNPKD810:

unsigned long long __dsunpkd810(unsigned long long a);
intl6x4_t __v_dsunpkd810(int8x8_t a);

DSUNPKD820:

unsigned long long __dsunpkd820(unsigned long long a);
intl6x4_t __v_dsunpkd820(int8x8_t a);

DSUNPKD830:

unsigned long long __dsunpkd83®(unsigned long long a);
intl6x4_t __v_dsunpkd830(int8x8_t a);

DSUNPKD831:

unsigned long long __dsunpkd831(unsigned long long a);
intl6x4_t __v_dsunpkd831(int8x8_t a);

DSUNPKD832:

unsigned long long __dsunpkd832(unsigned long long a);

intl6x4_t v_dsunpkd832(int8x8_t a);

26.7.70 DZUNPKD810,DZUNPKD820,DZUNPKD830,DZUNPKD831,DZUNPKD832

26.7.70.1 DZUNPKD810 (Signed Unpacking Bytes 1 & 0)
26.7.70.2 DZUNPKD820 (Signed Unpacking Bytes 2 & 0)
26.7.70.3 DZUNPKD830 (Signed Unpacking Bytes 3 & 0)
26.7.70.4 DZUNPKD831 (Signed Unpacking Bytes 3 & 1)
26.7.70.5 DZUNPKD832 (Signed Unpacking Bytes 3 & 2)

Type: SIMD

Format:
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31-25 24 - 20 19-15 14-12 11-7 6-0
DZUNPKDS xy XXXXX Rsl 000 Rd custom-3
0000110 1111011
Xy XXXXX

10 01001

20 01010

30 01011

31 01100

32 01101

Syntax:

DZUNPKD8xy Rd, Rsl
xy = {10, 20, 30, 31, 32}

Purpose:

Unpack byte x and byte y of 32-bit chunks in a register into two 16-bit unsigned halfwordsof 32-bit chunks in a register.

Description:

For the “DZUNPKDS8xy” instruction, it unpacks byte x and byte y of 32-bit chunks in Rsl into two 16-bit unsigned

halfwords and writes the results to the top part and the bottom part of 32-bit chunks in Rd.

Operations:

Rd.W[m].H[1] = SE16(Rs1.W[m].B[x])
Rd.W[m].H[®] = SE16(Rs1.W[m].B[y])

//DZUNPKD810, x=1,y=0
//DZUNPKD820, x=2,y=0
//DZUNPKD830, x=3,y=0
//DZUNPKD831, x=3,y=1
//DZUNPKD832, x=3,y=2

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

DZUNPKD810:

unsigned long long __dzunpkd810(unsigned long long a);
uintl6x4_t __v_dzunpkd810(uint8x8_t a);

DZUNPKD820:

unsigned long long __dzunpkd820(unsigned long long a);
uintl6x4_t __v_dzunpkd820(uint8x8_t a);

DZUNPKD830:

unsigned long long __dzunpkd830(unsigned long long a);
uintl6x4_t __v_dzunpkd830(uint8x8_t a);

DZUNPKD831:

(continues on next page)
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unsigned long long __dzunpkd831(unsigned long long a);
uintl16x4_t __v_dzunpkd831(uint8x8_t a);

DZUNPKD832:

unsigned long long __dzunpkd832(unsigned long long a);

uintl6x4_t __v_dzunpkd832(uint8x8_t a);

26.8 Appendix D: Nuclei N3 SIMD DSP Additional Instruction

26.8.1 DKMMAC (64-bit MSW 32x32 Signed Multiply and Saturating Add)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMMAC Rs2 Rsl1 000 Rd custom-3
0001010 1111011

Syntax:

DKMMAC Rd, Rsl, Rs2

Purpose:
Do MSW 32x32 element signed multiplications and saturating addition simultaneously. The results are written into Rd.
Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; op3t = Rd.W[x+1] // top

oplb Rsl.W[x]; op2b = Rs2.W[x]; op3b = Rd.W[x] // bottom

for ((aop,bop,dop,res) in [(oplt,op2t,op3t,rest), (oplb,op2b,op3b,resb)]) {
res = sat.q31(dop + (aop s* bop)[63:32]);

3

Rd = concat(rest, resb);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:
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unsigned long long __dkmmac(unsigned long long c, unsigned long long a, unsigned long long..
~b);

int32x2_t __v_dkmmac(int32x2_t c, int32x2_t a, int32x2_t b);

26.8.2 DKMMAC.u (64-bit MSW 32x32 Unsigned Multiply and Saturating Add)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMMAC.u Rs2 Rs1 000 Rd custom-3
0001011 1111011

Syntax:

DKMMAC.u Rd, Rsl, Rs2

Purpose:
Do MSW 32x32 element unsigned multiplications and saturating addition simultaneously. The results are written into Rd.
Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; op3t = Rd.W[x+1] // top

oplb = Rsl.W[x]; op2b = Rs2.W[x]; op3b = Rd.W[x] // bottom

for ((aop,bop,dop,res) in [(oplt,op2t,op3t,rest), (oplb,op2b,op3b,resb)]) {
res = sat.q31(dop + RUND(aop u* bop)[63:32]);

}

Rd = concat(rest, resb);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkmmac_u(unsigned long long c, unsigned long long a, unsigned long..
—long b);

int32x2_t __v_dkmmac_u(int32x2_t c, int32x2_t a, int32x2_t b);
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26.8.3 DKMMSB (64-bit MSW 32x32 Signed Multiply and Saturating Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMMSB Rs2 Rsl1 000 Rd custom-3
0001100 1111011

Syntax:

DKMMSB Rd, Rsl, Rs2

Purpose:
Do MSW 32x32 element signed multiplications and saturating subtraction simultaneously. The results are written into Rd.
Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; op3t = Rd.W[x+1] // top

oplb Rsl.W[x]; op2b = Rs2.W[x]; op3b = Rd.W[x] // bottom

for ((aop,bop,dop,res) in [(oplt,op2t,op3t,rest), (oplb,op2b,op3b,resb)]) {
res = sat.q31(dop - (aop s* bop)[63:32]);

3

Rd = concat(rest, resb);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkmmsb(unsigned long long c, unsigned long long a, unsigned long long..
~b);

int32x2_t __v_dkmmsb(int32x2_t c, int32x2_t a, int32x2_t b);

26.8.4 DKMMSB.u (64-bit MSW 32x32 Unsigned Multiply and Saturating Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMMSB.u Rs2 Rsl1 000 Rd custom-3
0001101 1111011

Syntax:
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DKMMSB.u Rd, Rsl, Rs2

Purpose:

Do MSW 32x32 element unsigned multiplications and saturating subtraction simultaneously. The results are written into
Rd.

Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; op3t = Rd.W[x+1] // top

oplb = Rs1.W[x]; op2b = Rs2.W[x]; op3b = Rd.W[x] // bottom

for ((aop,bop,dop,res) in [(oplt,op2t,op3t,rest), (oplb,op2b,op3b,resb)]) {
res = sat.q31(dop - (aop u* bop)[63:32]);

}

Rd = concat(rest, resb);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkmmsb_u(unsigned long long c, unsigned long long a, unsigned long..
—long b);

int32x2_t v_dkmmsb_u(int32x2_t ¢, int32x2_t a, int32x2_t b);

26.8.5 DKMADA (Two 16x16 with 32-bit Signed Double Add)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMADA Rs2 Rsl1 000 Rd custom-3
0001110 1111011

Syntax:

DKMADA Rd, Rsl, Rs2

Purpose:
Do two 16x16 with 32-bit signed double addition simultaneously. The results are written into Rd.
Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; op3t = Rd.W[x+1] // top
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oplb = Rsl.W[x]; op2b = Rs2.W[x]; op3b = Rd.W[x] // bottom

for ((aop,bop,dop,res) in [(oplt,op2t,op3t,rest), (oplb,op2b,op3b,resb)]) {

mull

aop.H[1] s* bop.H[1];

mul2

aop.H[O0] s* bop.H[0];

res = sat.q31(dop + mull + mul2);
3
Rd = concat(rest, resb);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkmada(unsigned long long c, unsigned long long a, unsigned long long..
~b);

int32x2_t __v_dkmada(int32x2_t c, intl6x4_t a, intl6x4_t b);

26.8.6 DKMAXDA (Two Cross 16x16 with 32-bit Signed Double Add)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMAXDA Rs2 Rsl1 000 Rd custom-3
0001111 1111011

Syntax:

DKMAXDA Rd, Rsl, Rs2

Purpose:
Do two cross 16x16 with 32-bit signed double addition simultaneously. The results are written into Rd.
Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; op3t = Rd.W[x+1] // top

oplb = Rs1.W[x]; op2b = Rs2.W[x]; op3b = Rd.W[x] // bottom

for ((aop,bop,dop,res) in [(oplt,op2t,op3t,rest), (oplb,op2b,op3b,resb)]) {

mull = aop.H[1] s* bop.H[0];
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mul2 = aop.H[®] s* bop.H[1];

res = sat.q31(dop + mull + mul2);
}
Rd = concat(rest, resb);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkmaxda(unsigned long long c, unsigned long long a, unsigned long long.
~b);

int32x2_t __v_dkmaxda(int32x2_t ¢, intl6x4_t a, intl6x4_t b);

26.8.7 DKMADS (Two 16x16 with 32-bit Sighed Add and Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMADS Rs2 Rsl1 000 Rd custom-3
0010000 1111011

Syntax:

DKMADS Rd, Rsl, Rs2

Purpose:
Do two 16x16 with 32-bit signed addition and subtraction simultaneously. The results are written into Rd.
Description:

Operations:

oplt Rs1.W[x+1]; op2t = Rs2.W[x+1]; op3t = Rd.W[x+1] // top

oplb = Rsl1.W[x]; op2b = Rs2.W[x]; op3b = Rd.W[x] // bottom

for ((aop,bop,dop,res) in [(oplt,op2t,op3t,rest), (oplb,op2b,op3b,resb)]) {

mull

aop.H[1] s* bop.H[1];

mul2 = aop.H[®] s* bop.H[0];
res = sat.q31(dop + mull - mul2);

}

Rd = concat(rest, resb);
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x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkmads(unsigned long long c, unsigned long long a, unsigned long long..
~b);

int32x2_t v_dkmads (int32x2_t c, intl6x4_t a, intl6x4_t b);

26.8.8 DKMADRS (Two 16x16 with 32-bit Signed Add and Reversed Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMADRS Rs2 Rsl1 000 Rd custom-3
0010001 1111011

Syntax:

DKMADRS Rd, Rsl, Rs2

Purpose:
Do two 16x16 with 32-bit signed addition and revered subtraction simultaneously. The results are written into Rd.
Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; op3t = Rd.W[x+1] // top

oplb = Rs1.W[x]; op2b = Rs2.W[x]; op3b = Rd.W[x] // bottom

for ((aop,bop,dop,res) in [(oplt,op2t,op3t,rest), (oplb,op2b,op3b,resb)]) {

mull = aop.H[1] s* bop.H[1];

mul?2 aop.H[O®] s* bop.H[O0];
res = sat.q31(dop - mull + mul2);
}

Rd = concat(rest, resb);

x=0

Exceptions: None
Privilege level: All
Note: None

26.8. Appendix D: Nuclei N3 SIMD DSP Additional Instruction 241




Nuclei® RISC-V Instruction Set Architecture Specification

Intrinsic functions:

unsigned long long __dkmadrs(unsigned long long c, unsigned long long a, unsigned long long..
—b);

int32x2_t __v_dkmadrs(int32x2_t c, intl6x4_t a, intl6x4_t b);

26.8.9 DKMAXDS (Two Cross 16x16 with 32-bit Signed Add and Sub)

Type: SIMD

Format:
3125 24 20 1915 1412 117 60
DKMAXDS Rs2 Rsl 000 Rd custom-3
0010010 1111011

Syntax:

DKMAXDS Rd, Rsl, Rs2

Purpose:
Do two cross 16x16 with 32-bit signed addition and subtraction simultaneously. The results are written into Rd.
Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; op3t = Rd.W[x+1] // top

oplb Rsl.W[x]; op2b = Rs2.W[x]; op3b = Rd.W[x] // bottom

for ((aop,bop,dop,res) in [(oplt,op2t,op3t,rest), (oplb,op2b,op3b,resb)]) {

mull = aop.H[1] s* bop.H[0];

mul2 = aop.H[®] s* bop.H[1];

res = sat.q31(dop + mull - mul2);
}
Rd = concat(rest, resb);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkmaxds(unsigned long long c, unsigned long long a, unsigned long long.
—b);

int32x2_t __v_dkmaxds(int32x2_t c, intl6x4_t a, intl6x4_t b);
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26.8.10 DKMSDA (Two 16x16 with 32-bit Signed Double Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMSDA Rs2 Rsl1 000 Rd custom-3
0010011 1111011

Syntax:

DKMSDA Rd, Rsl, Rs2

Purpose:

Do two 16x16 with 32-bit signed double subtraction simultaneously. The results are written into Rd.

Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; op3t = Rd.W[x+1] // top

oplb

Rsl.W[x]; op2b = Rs2.W[x]; op3b = Rd.W[x] // bottom

for ((aop,bop,dop,res) in [(oplt,op2t,op3t,rest), (oplb,op2b,op3b,resb)]) {

mull

aop.H[1] s* bop.H[1];

mul2 = aop.H[®] s* bop.H[O];

res = sat.q31(dop - mull - mul2);
}
Rd = concat(rest, resb);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkmsda(unsigned long long c, unsigned long long a, unsigned long long..

~b);

int32x2_t

_v_dkmsda(int32x2_t c, intl6x4_t a, intl6x4_t b);
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26.8.11 DKMSXDA (Two Cross 16x16 with 32-bit Signed Double Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMSXDA Rs2 Rsl1 000 Rd custom-3
0010100 1111011

Syntax:

DKMSXDA Rd, Rsl, Rs2

Purpose:

Do two cross 16x16 with 32-bit signed double subtraction simultaneously. The results are written into Rd.

Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; op3t = Rd.W[x+1] // top

oplb

Rsl.W[x]; op2b = Rs2.W[x]; op3b = Rd.W[x] // bottom

for ((aop,bop,dop,res) in [(oplt,op2t,op3t,rest), (oplb,op2b,op3b,resb)]) {

mull

aop.H[1] s* bop.H[O];

mul2 = aop.H[1] s* bop.H[O];

res = sat.q31(dop - mull - mul2);
}
Rd = concat(rest, resb);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dkmsxda(unsigned long long c, unsigned long long a, unsigned long long..

~b);

int32x2_t

_v_dkmsxda(int32x2_t c, intl6x4_t a, intl6x4_t b);
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26.8.12 DSMAQA (Four Signed 8x8 with 32-bit Signed Add)

Type: SIMD

Format:
31-25 24 -20 19-15 14-12 11-7 6-0
DSMAQA Rs2 Rsl 000 Rd custom-3
0010101 1111011

Syntax:

DSMAQA Rd, Rsl, Rs2

Purpose:

Do four signed 8x8 with 32-bit signed addition simultaneously. The results are written into Rd.

Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; op3t = Rd.W[x+1] // top

oplb

Rsl.W[x]; op2b = Rs2.W[x]; op3b = Rd.W[x] // bottom

for ((aop,bop,dop,res) in [(oplt,op2t,op3t,rest), (oplb,op2b,op3b,resb)]) {

mO

ml

aop.B[0®] s* bop.B[0];

aop.B[1] s* bop.B[1];

m2 = aop.B[2] s* bop.B[2];

m3

res = dop + mO@ + ml + m2 + m3;

}

Rd = concat(rest, resb);

x=0

aop.B[3] s* bop.B[3];

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dsmaga(unsigned long long c, unsigned long long a, unsigned long long..

—b);

int32x2_t v_dsmaga(int32x2_t c, int8x8_t a, int8x8_t b);
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26.8.13 DSMAQA.SU (Four Signed 8 x Unsigned 8 with 32-bit Signed Add)

Type: SIMD

Format:
31-25 24 -20 19-15 14-12 11-7 6-0
DSMAQA.SU Rs2 Rsl 000 Rd custom-3
0010110 1111011

Syntax:

DSMAQA.SU Rd, Rsl, Rs2

Purpose:

Do four signed 8 x unsigned 8 with 32-bit signed addition simultaneously. The results are written into Rd.

Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; op3t = Rd.W[x+1] // top

oplb

Rsl.W[x]; op2b = Rs2.W[x]; op3b = Rd.W[x] // bottom

for ((aop,bop,dop,res) in [(oplt,op2t,op3t,rest), (oplb,op2b,op3b,resb)]) {

mO

ml

aop.B[0] su* bop.B[O];

aop.B[1] su* bop.B[1];

m2 = aop.B[2] su* bop.B[2];

m3

res = dop + mO@ + ml + m2 + m3;

}

Rd = concat(rest, resb);

x=0

aop.B[3] su* bop.B[3];

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dsmaga_su(unsigned long long c, unsigned long long a, unsigned long.

—long b);

int32x2_t v_dsmaga_su(int32x2_t c, int8x8_t a, int8x8_t b);
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26.8.14 DUMAQA (Four Unsigned 8x8 with 32-bit Unsigned Add)

Type: SIMD

Format:
31-25 24 -20 19-15 14-12 11-7 6-0
DSMAQA Rs2 Rsl 000 Rd custom-3
0010111 1111011

Syntax:

DUMAQA Rd, Rsl, Rs2

Purpose:

Do four unsigned 8x8 with 32-bit unsigned addition simultaneously. The results are written into Rd.

Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; op3t = Rd.W[x+1] // top

oplb

Rsl.W[x]; op2b = Rs2.W[x]; op3b = Rd.W[x] // bottom

for ((aop,bop,dop,res) in [(oplt,op2t,op3t,rest), (oplb,op2b,op3b,resb)]) {

mO

ml

aop.B[0®] u* bop.B[0];

aop.B[1] u* bop.B[1];

m2 = aop.B[2] u* bop.B[2];

m3

res = dop + mO@ + ml + m2 + m3;

}

Rd = concat(rest, resb);

x=0

aop.B[3] u* bop.B[3];

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

unsigned long long __dumaga(unsigned long long c, unsigned long long a, unsigned long long..

—b);

int32x2_t v_dumaga(int32x2_t c, int8x8_t a, int8x8_t b);
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26.8.15 DKMDAS32 (Two Signed 32x32 with 64-bit Saturation Add)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMDA32 Rs2 Rsl1 000 Rd custom-3
0011000 1111011

Syntax:

DKMDA32 Rd, Rsl, Rs2

Purpose:

Do two signed 32x32 add the signed multiplication results with Q63 saturation. The results are written into Rd.

Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb

t0 = oplb s* op2b;
tl = oplt s* op2t;
Rd = sat.g63(t® + tl1);

x=0

Rsl.W[x]; op2b = Rs2.W[x]; // bottom

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dkmda32(unsigned long long a, unsigned long long b);

int64_t

v_dkmda32(int32x2_t a, int32x2_t b);

26.8.16 DKMXDA32 (Two Cross Signed 32x32 with 64-bit Saturation Add)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMXDA32 Rs2 Rsl1 000 Rd custom-3
0011001 1111011

Syntax:

DKMXDA32 Rd, Rsl, Rs2

Purpose:
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Do two cross signed 32x32 and add the signed multiplication results with Q63 saturation. The results are written into Rd.
Description:

Operations:

oplt = Rsl1.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb = Rs1.W[x]; op2b = Rs2.W[x]; // bottom

t01

oplb s* op2t;
t10 = oplt s* op2b;
Rd = sat.g63(t01 + t10);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dkmxda32(unsigned long long a, unsigned long long b);

int64_t __v_dkmxda32(int32x2_t a, int32x2_t b);

26.8.17 DKMADA32 (Two Signed 32x32 with 64-bit Saturation Add)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMADA32 Rs2 Rsl 000 Rd custom-3
0011010 1111011
Syntax:

DKMADA32 Rd, Rsl, Rs2

Purpose:

Do two signed 32x32 and add the signed multiplication results and a third register with Q63 saturation. The results are
written into Rd.

Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb

Rs1.W[x]; op2b = Rs2.W[x]; // bottom

t® = oplb s* op2b;

tl = oplt s* op2t;
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Rd = sat.g63(Rd + t0® + tl);

x=0

Exceptions: None

Privilege level: All

Note: None

Intrinsic functions:

long long __dkmada32(long long c, unsigned long long a, unsigned long long b);

int64_t __v_dkmada32(int64_t c, int32x2_t a, int32x2_t b);

26.8.18 DKMAXDA32 (Two Cross Signed 32x32 with 64-bit Saturation Add)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMAXDA32 Rs2 Rsl1 000 Rd custom-3
0011011 1111011

Syntax:

DKMAXDA32 Rd, Rsl, Rs2

Purpose:

Do two cross signed 32x32 and add the signed multiplication results and a third register with Q63 saturation. The results

are written into Rd.

Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb = Rsl1.W[x]; op2b = Rs2.W[x]; // bottom

t01

t10

oplb s* op2t;

oplt s* op2b;

Rd = sat.g63(Rd + t01 + t10);

x=0

Exceptions: None

Privilege level: All

Note: None

Intrinsic functions:

long long __dkmaxda32(long long c, unsigned long long a, unsigned long long b);

int64_t __v_dkmaxda32(int64_t c, int32x2_t a, int32x2_t b);
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26.8.19 DKMADS32 (Two Signed 32x32 with 64-bit Saturation Add and Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMADS32 Rs2 Rsl1 000 Rd custom-3
0011100 1111011

Syntax:

DKMADS32 Rd, Rsl, Rs2

Purpose:

Do two signed 32x32 and add the top signed multiplication results and subtraction bottom signed multiplication results
and add a third register with Q63 saturation. The results are written into Rd.

Description:

Operations:

oplt = Rsl1.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb

Rsl.W[x]; op2b = Rs2.W[x]; // bottom

t® = oplb s* op2b;
tl = oplt s* op2t;
Rd = sat.q63(Rd - t0® + t1);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dkmads32(long long c, unsigned long long a, unsigned long long b);

int64_t __v_dkmads32(int64_t c, int32x2_t a, int32x2_t b);

26.8.20 DKMADRS32 (Two Signed 32x32 with 64-bit Saturation Revered Add and Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMADRS32 Rs2 Rsl1 000 Rd custom-3
0011101 1111011

Syntax:

DKMADRS32 Rd, Rsl, Rs2

Purpose:
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Do two signed 32x32 and add the signed multiplication results and a third register with Q63 saturation. The results
are written into Rd.Do two signed 32x32 and subtraction the top signed multiplication results and add bottom signed
multiplication results and add a third register with Q63 saturation. The results are written into Rd.

Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb Rsl.W[x]; op2b = Rs2.W[x]; // bottom

t® = oplb s* op2b;
tl = oplt s* op2t;
Rd = sat.q63(Rd + t® - t1);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dkmadrs32(long long c, unsigned long long a, unsigned long long b);

int64_t __v_dkmadrs32(int64_t c, int32x2_t a, int32x2_t b);

26.8.21 DKMAXDS32 (Two Cross Signed 32x32 with 64-bit Saturation Add and Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMAXDS32 Rs2 Rsl 000 Rd custom-3
0011110 1111011

Syntax:

DKMAXDS32 Rd, Rsl, Rs2

Purpose:

Do two signed 32x32 and add the top signed multiplication results and subtraction bottom signed multiplication results
and add a third register with Q63 saturation. The results are written into Rd.

Description:

Operations:

oplt Rsl1.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb

Rsl.W[x]; op2b = Rs2.W[x]; // bottom

t01 = oplb s* op2t;
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t10 = oplt s* op2b;
Rd = sat.g63(Rd - t01 + t10);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dkmaxds32(long long c, unsigned long long a, unsigned long long b);

int64_t __v_dkmaxds32(int64_t c, int32x2_t a, int32x2_t b);

26.8.22 DKMSDA32 (Two Signed 32x32 with 64-bit Saturation Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0
DKMSDA32 Rs2 Rsl 000 Rd custom-3
0011111 1111011

Syntax:

DKMSDA32 Rd, Rsl, Rs2

Purpose:

Do two signed 32x32 and subtraction the top signed multiplication results and subtraction bottom signed multiplication
results and add a third register with Q63 saturation. The results are written into Rd.

Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb Rsl.W[x]; op2b = Rs2.W[x]; // bottom

t0 = oplb s* op2b;
tl = oplt s* op2t;
Rd = sat.g63(Rd - t0® - tl);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

26.8. Appendix D: Nuclei N3 SIMD DSP Additional Instruction 253




Nuclei® RISC-V Instruction Set Architecture Specification

long long __dkmsda32(long long c, unsigned long long a, unsigned long long b);

int64_t __v_dkmsda32(int64_t c, int32x2_t a, int32x2_t b);

26.8.23 DKMSXDA32 (Two Cross Signed 32x32 with 64-bit Saturation Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMSXDA32 Rs2 Rsl 000 Rd custom-3
0100000 1111011

Syntax:

DKMSXDA32 Rd, Rsl, Rs2

Purpose:

Do two cross signed 32x32 and subtraction the top signed multiplication results and subtraction bottom signed multipli-

cation results and add a third register with Q63 saturation. The results are written into Rd.
Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb = Rsl1.W[x]; op2b = Rs2.W[x]; // bottom

t01 = oplb s* op2t;

t10 = oplt s* op2b;
Rd = sat.q63(Rd - t01 - t10);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dkmsxda32(long long c, unsigned long long a, unsigned long long b);

int64_t __v_dkmsxda32(int64_t c, int32x2_t a, int32x2_t b);
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26.8.24 DSMDS32 (Two Signed 32x32 with 64-bit Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMDS32 Rs2 Rsl1 000 Rd custom-3
0100001 1111011

Syntax:

DSMDS32 Rd, Rsl, Rs2

Purpose:

Do two signed 32x32 and add the top signed multiplication results and subtraction bottom signed multiplication. The
results are written into Rd.

Description:

Operations:

oplt = Rsl1.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb

Rsl.W[x]; op2b = Rs2.W[x]; // bottom

t® = oplb s* op2b;
tl = oplt s* op2t;
Rd = t1 - t0;

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dsmds32(unsigned long long a, unsigned long long b);

int64_t __v_dsmds32 (int32x2_t a, int32x2_t b);

26.8.25 DSMDRS32 (Two Signed 32x32 with 64-bit Revered Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMDRS32 Rs2 Rsl1 000 Rd custom-3
0100010 1111011

Syntax:

DSMDRS32 Rd, Rsl, Rs2

Purpose:
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Do two signed 32x32 and subtraction the top signed multiplication results and add bottom signed multiplication. The
results are written into Rd.

Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb Rsl.W[x]; op2b = Rs2.W[x]; // bottom

t0 = oplb s* op2b;
tl = oplt s* op2t;
Rd = t® - t1;

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dsmdrs32(unsigned long long a, unsigned long long b);

int64_t __v_ dsmdrs32 (int32x2_t a, int32x2_t b);

26.8.26 DSMXDS32 (Two Cross Signed 32x32 with 64-bit Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMXDS32 Rs2 Rsl1 000 Rd custom-3
0100011 1111011

Syntax:

DSMXDS32 Rd, Rsl, Rs2

Purpose:

Do two cross signed 32x32 and add the top signed multiplication results and subtraction bottom signed multiplication.
The results are written into Rd.

Description:

Operations:

oplt Rsl.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb = Rsl1.W[x]; op2b = Rs2.W[x]; // bottom

t01 oplb s* op2t;

t10 = oplt s* op2b;

(continues on next page)
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(continued from previous page)

Rd = t10 - t01;

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dsmxds32(unsigned long long a, unsigned long long b);

int64_t __v_dsmxds32(int32x2_t a, int32x2_t b);

26.8.27 DSMALDA (Four Signed 16x16 with 64-bit Add)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMALDA Rs2 Rsl1 000 Rd custom-3
0100100 1111011

Syntax:

DSMALDA Rd, Rsl, Rs2

Purpose:

Do four signed 16x16 and add signed multiplication results and a third register. The results are written into Rd.

Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb

Rsl.W[x]; op2b = Rs2.W[x]; // bottom

m® = oplb.H[0] s* op2b.H[O0];

ml = oplb.H[1] s* op2b.H[1];
m2 = oplt.H[O] s* op2t.H[O];
m3 = oplt.H[1] s* op2t.H[1];

Rd =Rd + m0 + ml + m2 + m3;

x=0

Exceptions: None
Privilege level: All
Note: None
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Intrinsic functions:

long long __dsmalda(long long c, unsigned long long a, unsigned long long b);

int64_t __v_dsmalda (int64_t c, intl6x4_t a, intl6x4_t b);

26.8.28 DSMALXDA (Four Cross Signed 16x16 with 64-bit Add)

Type: SIMD

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0
DSMALXDA Rs2 Rsl 000 Rd custom-3
0100101 1111011

Syntax:

DSMALXDA Rd, Rsl, Rs2

Purpose:
Do four cross signed 16x16 and add signed multiplication results and a third register. The results are written into Rd.
Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb Rsl.W[x]; op2b = Rs2.W[x]; // bottom

m® = oplb.H[O] s* op2b.H[1];
ml = oplb.H[1] s* op2b.H[O®];
m2 = oplt.H[®] s* op2t.H[1];

m3 = oplt.H[1]

w:

“ op2t.H[O];

Rd =Rd + m0@ + ml + m2 + m3;

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dsmalxda(long long c, unsigned long long a, unsigned long long b);

int64_t __v_dsmalxda (int64_t c, intl6x4_t a, intl6x4_t b);
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26.8.29 DSMALDS (Four Signed 16x16 with 64-bit Add and Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMALDS Rs2 Rsl1 000 Rd custom-3
0100110 1111011

Syntax:

DSMALDS Rd, Rsl, Rs2

Purpose:

Do four signed 16x16 and add and subtraction signed multiplication results and a third register. The results are written

into Rd.
Description:

Operations:

oplt = Rsl1.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb

m® = oplb.H[1]

mn

ml = oplb.H[O]

%]

“ op2b.H[1];

* op2b.H[O];

m2 = oplt.H[1] s* op2t.H[1];

m3 = oplt.H[O®] s* op2t.H[O];

Rd =Rd + m0@ - ml + m2 - m3;

x=0

Rsl.W[x]; op2b = Rs2.W[x]; // bottom

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dsmalds(long long c, unsigned long long a, unsigned long long b);

int64_t __v_dsmalds (int64_t c, intl6x4_t a, intl6x4_t b);
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26.8.30 DSMALDRS (Four Signed 16x16 with 64-bit Add and Revered Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMALDRS Rs2 Rsl1 000 Rd custom-3
0100111 1111011

Syntax:

DSMALDRS Rd, Rsl, Rs2

Purpose:

Do two signed 16x16 and add and revered subtraction signed multiplication results and a third register. The results are

written into Rd.
Description:

Operations:

oplt = Rsl1.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb

Rsl.W[x]; op2b = Rs2.W[x]; // bottom

m® = oplb.H[O]

mn

“ op2b.H[0];

ml = oplb.H[1]

%]

* op2b.H[1];
m2 = oplt.H[O] s* op2t.H[O];

m3 = oplt.H[1] s* op2t.H[1];

Rd =Rd + m0@ - ml + m2 - m3;

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dsmaldrs(long long c, unsigned long long a, unsigned long long b);

int64_t __v_dsmaldrs (int64_t c, intl6x4_t a, intl6x4_t b);
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26.8.31 DSMALXDS (Four Cross Signed 16x16 with 64-bit Add and Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMALXDS Rs2 Rsl1 000 Rd custom-3
0101000 1111011

Syntax:

DSMALXDS Rd, Rsl, Rs2

Purpose:

Do four cross signed 16x16 and add and subtraction signed multiplication results and a third register. The results are
written into Rd.

Description:

Operations:

oplt = Rsl1.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb

Rsl.W[x]; op2b = Rs2.W[x]; // bottom

m® = oplb.H[1]

mn

“ op2b.H[0];

ml = oplb.H[O]

%]

* op2b.H[1];
m2 = oplt.H[1] s* op2t.H[O];

m3 = oplt.H[®] s* op2t.H[1];

Rd =Rd + m0@ - ml + m2 - m3;

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dsmalxds(long long c, unsigned long long a, unsigned long long b);

int64_t __v_dsmalxds (int64_t c, intl6x4_t a, intl6x4_t b);

26.8. Appendix D: Nuclei N3 SIMD DSP Additional Instruction 261




Nuclei® RISC-V Instruction Set Architecture Specification

26.8.32 DSMSLDA (Four Signed 16x16 with 64-bit Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMSLDA Rs2 Rsl1 000 Rd custom-3
0101001 1111011

Syntax:

DSMSLDA Rd, Rsl, Rs2

Purpose:

Do four signed 16x16 and subtraction signed multiplication results and add a third register. The results are written into

Rd.
Description:

Operations:

oplt = Rsl1.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb

m® = oplb.H[O]

mn

ml = oplb.H[1]

%]

“ op2b.H[0];

* op2b.H[1];

m2 = oplt.H[O] s* op2t.H[O];

m3 = oplt.H[1] s* op2t.H[1];

Rd =Rd - m® - ml - m2 - m3;

x=0

Rsl.W[x]; op2b = Rs2.W[x]; // bottom

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dsmslda(long long c, unsigned long long a, unsigned long long b);

int64_t __v_dsmslda (int64_t c, intl16x4_t a, intl6x4_t b);
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26.8.33 DSMSLXDA (Four Cross Signed 16x16 with 64-bit Sub)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMSLXDA Rs2 Rsl1 000 Rd custom-3
0101010 1111011

Syntax:

DSMSLXDA Rd, Rsl, Rs2

Purpose:

Do four signed 16x16 and subtraction signed multiplication results and add a third register. The results are written into

Rd.
Description:

Operations:

oplt = Rsl1.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb

Rsl.W[x]; op2b = Rs2.W[x]; // bottom

m® = oplb.H[O]

mn

“ op2b.H[1];

ml = oplb.H[1]

%]

* op2b.H[O];
m2 = oplt.H[O] s* op2t.H[1];

m3 = oplt.H[1] s* op2t.H[O];

Rd =Rd - m® - ml - m2 - m3;

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dsmslxda(long long c, unsigned long long a, unsigned long long b);

int64_t __v_dsmslxda (int64_t c, intl6x4_t a, intl6x4_t b);
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26.8.34 DDSMAQA (Eight Signed 8x8 with 64-bit Add)

Type: SIMD

Format:
31-25 24 -20 19-15 14-12 11-7 6-0
DDSMAQA Rs2 Rsl 000 Rd custom-3
0101011 1111011

Syntax:

DDSMAQA Rd, Rsl, Rs2

Purpose:
Do eight signed 8x8 and add signed multiplication results and a third register. The results are written into Rd.
Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb Rsl.W[x]; op2b = Rs2.W[x]; // bottom

m® = oplb.B[0] s* op2b.B[0];
ml = oplb.B[1] s* op2b.B[1];
m2 = oplb.B[2] s* op2b.B[2];
m3 = oplb.B[3] s* op2b.B[3];
m4 = oplt.B[O®] s* op2t.B[0];
m5 = oplt.B[1] s* op2t.B[1];
m6 = oplt.B[2] s* op2t.B[2];

m7 = oplt.B[3] s* op2t.B[3];

sO@ = md® + ml + m2 + m3;
sl =m4 + mb + m6 + m7;
Rd = Rd + s® + sli;

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __ddsmaga(long long c, unsigned long long a, unsigned long long b);

int64_t __v_ddsmaga (int64_t c, int8x8_t a, int8x8_t b);
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26.8.35 DDSMAQA.SU (Eight Signed 8 x Unsigned 8 with 64-bit Add)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-13 11-7 6-0
DDSMAQA.SU Rs2 Rsl 000 Rd custom-3
0101100 1111011

Syntax:

DDSMAQA.SU Rd, Rsl, Rs2

Purpose:
Do eight signed 8 x unsigned 8 and add signed multiplication results and a third register. The results are written into Rd.
Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb Rsl.W[x]; op2b = Rs2.W[x]; // bottom

m® = oplb.B[0®] su* op2b.B[0];
ml = oplb.B[1] su* op2b.B[1];
m2 = oplb.B[2] su* op2b.B[2];
m3 = oplb.B[3] su* op2b.B[3];
m4 = oplt.B[O®] su* op2t.B[0];
m5 = oplt.B[1] su* op2t.B[1];
mé = oplt.B[2] su* op2t.B[2];

m7 = oplt.B[3] su* op2t.B[3];

sO@ = md® + ml + m2 + m3;
sl =m4 + mb + m6 + m7;
Rd = Rd + s® + sli;

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __ddsmaga_su(long long c, unsigned long long a, unsigned long long b);

int64_t __v_ddsmaga_su (int64_t c, int8x8_t a, int8x8_t b);
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26.8.36 DDUMAQA (Eight Unsigned 8x8 with 64-bit Unsigned Add)

Type: SIMD

Format:
31-25 24 -20 19-15 14-12 11-7 6-0
DDSMAQA Rs2 Rsl 000 Rd custom-3
0101101 1111011

Syntax:

DDUMAQA Rd, Rsl, Rs2

Purpose:
Do eight unsigned 8x8 and add unsigned multiplication results and a third register. The results are written into Rd.
Description:

Operations:

oplt = Rsl.W[x+1]; op2t = Rs2.W[x+1]; // top

oplb Rsl.W[x]; op2b = Rs2.W[x]; // bottom

m® = oplb.B[0] u* op2b.B[0];
ml = oplb.B[1] u* op2b.B[1];
m2 = oplb.B[2] u* op2b.B[2];
m3 = oplb.B[3] u* op2b.B[3];
m4 = oplt.B[O®] u* op2t.B[0];
m5 = oplt.B[1] u* op2t.B[1];
m6 = oplt.B[2] u* op2t.B[2];

m7 = oplt.B[3] u* op2t.B[3];

sO@ = md® + ml + m2 + m3;
sl =m4 + mb + m6 + m7;
Rd = Rd + s® + sli;

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __ddumaga(long long c, unsigned long long a, unsigned long long b);

int64_t __v_ddumaga (int64_t c, int8x8_t a, int8x8_t b);

26.8. Appendix D: Nuclei N3 SIMD DSP Additional Instruction 266




Nuclei® RISC-V Instruction Set Architecture Specification

26.8.37 DSMA32.u (64-bit SIMD 32-bit Signed Multiply Addition With Rounding and

Clip)
Type: SIMD
Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMA32.u Rs2 Rsl1 000 Rd custom-3
1101000 1111011
Syntax:

DSMA32.u Rd, Rsl, Rs2

Purpose:

Do two signed 32x32 and add signed multiplication results with Rounding, then right shift 32-bit and clip q63 to q31. The
result is written to Rd.

Description:

For the “DSMA32.u” instruction, multiply the top 32-bit Q31 content of 64-bit chunks in Rs1 with the top 32-bit Q31
content of 64-bit chunks in Rs2. At the same time, multiply the bottom 32-bit Q31 content of 64-bit chunks in Rs1 with
the bottom 32-bit Q31 content of 64-bit chunks in Rs2.

At the same time, accumulate the results and perform additional rounding operations, and then move the data to the right
by 32-bit, and clip the 64-bit data into 32-bit.The result is written to Rd.

Operations:

Rd = (g31_t)((Rsl.W[x] s* Rs2.W[x] + Rsl.W[x + 1] s* Rs2.W[x + 1] + 0x80000000LL) s>> 32);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long __dsma32_u(unsigned long long a, unsigned long long b);

int32_t __v_dsma32_u(int32x2_t a, int32x2_t b);

26.8.38 DSMXS32.u (64-bit SIMD 32-bit Signed Multiply Cross Subtraction With
Rounding and Clip)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMXS32.u Rs2 Rsl1 000 Rd custom-3
1101001 1111011

Syntax:

DSMXS32.u Rd, Rsl, Rs2

Purpose:
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Do two cross signed 32x32 and sub signed multiplication results with Rounding, then right shift 32-bit and clip q63 to
q31. The result is written to Rd.

Description:

For the “DSMXS32.u” instruction, multiply the top 32-bit Q31 content of 64-bit chunks in Rsl with the bottom 32-bit
Q31 content of 64-bit chunks in Rs2. At the same time, multiply the bottom 32-bit Q31 content of 64-bit chunks in Rs1
with the top 32-bit Q31 content of 64-bit chunks in Rs2.

At the same time, subtract the results and perform additional rounding operations, and then move the data to the right by
32-bit, and clip the 64-bit data into 32-bit.The result is written to Rd.

Operations:

Rd = (g31_1)((Rs1.W[x + 1] s* Rs2.W[x] - Rsl.W[x] s* Rs2.W[x + 1] + 0x80000000LL) s>> 32);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long __dsmxs32_u(unsigned long long a, unsigned long long b);

int32_t __v_dsmxs32_u(int32x2_t a, int32x2_t b);

26.8.39 DSMXA32.u (64-bit SIMD 32-bit Signed Cross Multiply Addition with Rounding

and Clip)
Type: SIMD
Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMXA32.u Rs2 Rsl1 000 Rd custom-3
1101010 1111011
Syntax:

DSMXA32.u Rd, Rsl, Rs2

Purpose:

Do two cross signed 32x32 and add signed multiplication results with Rounding, then right shift 32-bit and clip q63 to
q31. The result is written to Rd.

Description:

For the “DSMXA32.u” instruction,multiply the top 32-bit Q31 content of 64-bit chunks in Rs1 with the bottom 32-bit Q31
content of 64-bit chunks in Rs2. At the same time, multiply the bottom 32-bit Q31 content of 64-bit chunks in Rs1 with
the top 32-bit Q31 content of 64-bit chunks in Rs2.

At the same time, accumulate the results and perform additional rounding operations, and then move the data to the right
by 32-bit, and clip the 64-bit data into 32-bit.The result is written to Rd.

Operations:

Rd = (g31_t)((Rsl1.W[x + 1] s* Rs2.W[x] + Rsl.W[x] s* Rs2.W[x + 1] + 0x80000000LL) s>> 32);

x=0

Exceptions: None
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Privilege level: All
Note: None

Intrinsic functions:

long __dsmxa32_u(unsigned long long a, unsigned long long b);

int32_t __v_dsmxa32_u(int32x2_t a, int32x2_t b);

26.8.40 DSMS32.u (64-bit SIMD 32-bit Signed Multiply Subtraction with Rounding and
Clip)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMS32.u Rs2 Rsl1 000 Rd custom-3
1101011 1111011
Syntax:

DSMS32.u Rd, Rsl, Rs2

Purpose:

Do two signed 32x32 and sub signed multiplication results with Rounding, then right shift 32-bit and clip q63 to q31. The
result is written to Rd.

Description:

For the “DSMS32.u” instruction, multiply the bottom 32-bit Q31 content of 64-bit chunks in Rs1 with the bottom 32-bit
Q31 content of 64-bit chunks in Rs2. At the same time, multiply the top 32-bit Q31 content of 64-bit chunks in Rs1 with
the top 32-bit Q31 content of 64-bit chunks in Rs2.

At the same time, subtract the results and perform additional rounding operations, and then move the data to the right by
32-bit, and clip the 64-bit data into 32-bit.The result is written to Rd.

Operations:

Rd = (g31_t)((Rsl.W[x] s* Rs2.W[x] - Rsl.W[x + 1] s* Rs2.W[x + 1] + 0x80000000LL) s>> 32);

x=0

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long __dsms32_u(unsigned long long a, unsigned long long b);

int32_t __v_dsms32_u(int32x2_t a, int32x2_t b);
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26.8.41 DSMADA16 (Signed Multiply Two Halfs and Two Adds 32-bit)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMADAI16 Rs2 Rsl 000 Rd custom-3
1100010 1111011

Syntax:

DSMADA16 Rd, Rsl, Rs2

Purpose:

Do two signed 16-bit multiplications of two 32-bit registers; and then adds the 32-bit results and the 32-bit value of an
even/odd pair of registers together.

DSMADA16: rt pair+ top*top + bottom*bottom
Description:

This instruction multiplies the per 16-bit content of the 32-bit elements of Rs1 with the corresponding 16-bit content of
the 32-bit elements of Rs2. The result is added to the 32-bit value of an even/odd pair of registers specified by Rd(4,1).
The 32-bit addition result is written back to the register-pair. The 16-bit values of Rs1 and Rs2, and the 32-bit value of the
register-pair are treated as signed integers.

Operations:

// DSMADA16

Mres@[0][31:0] = (Rs1.W[O].H[O] * Rs2.W[O].H[O]);

Mres1[0][31:0] = (Rs1.W[O®].H[1] * Rs2.W[O®].H[1]);

Mres®[1][31:0] (Rs1.W[1].H[O] * Rs2.W[1].H[O1);

Mres1[1][31:0] (Rs1.W[1].H[1] * Rs2.W[1].H[11);

Rd.W = Rd.W + SE32(Mres®[0]1[31:0]) + SE32(Mres1[0][31:0]) + SE32(MresO[1][31:0]) +.
—SE32(Mres1[1][31:0]);

Exceptions: None
Privilege level: All
Note: The result is a 32-bit number of bits, using only one of the pair registers.

Intrinsic functions:

long long __dsmadal6(long long t, unsigned long long a, unsigned long long b);

int64_t __v_dsmadal6(int64_t t, uintl6x4_t a, uintl6x4_t b);
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26.8.42 DSMAXDA16 (Signed Crossed Multiply Two Halfs and Two Adds 32-bit)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMAXDA16 Rs2 Rsl 000 Rd custom-3
1100011 1111011

Syntax:

DSMAXDA16 Rd, Rsl, Rs2

Purpose:

Do two signed 16-bit multiplications from the 32-bit elements of two registers; and then adds the two 32-bit results and
the 32-bit value of an even/odd pair of registers together.

DSMAXDA: rt pair+ top*bottom + bottom*top (all 32-bit elements)
Description:

This instruction multiplies the top 16-bit content of the 32-bit elements of Rs1 with the bottom 16-bit content of the 32-bit
elements of Rs2 and then adds the result to the result of multiplying the bottom 16-bit content of the 32-bit elements of
Rs1 with the top 16-bit content of the 32-bit elements of Rs2 with unlimited precision. The result is added to the 64-bit
value of an even/odd pair of registers specified by Rd(4,1). The 64-bit addition result is clipped to 32-bit result. (The 16-bit
values of Rs1 and Rs2, and the 64-bit value of the register-pair are treated as signed integers.)

Operations:

// SMALXDA16

MresO[0][31:0]

(Rs1.W[O].H[O] * Rs2.W[O].H[1]);

Mres1[0][31:0]

(Rs1.W[O0].H[1] * Rs2.W[O].H[O1);

Mres®[1]1[31:0] = (Rs1.W[1].H[O] * Rs2.W[1].H[1]);

Mres1[1][31:0] = (Rsl.W[1].H[1] * Rs2.W[1].H[O]);

RA.W = Rd.W + SE32(Mres®[0][31:0]) + SE32(Mres1[0][31:0]) + SE32(MresO[1]1[31:0]) +.
—SE32(Mres1[1][31:0]);

Exceptions: None
Privilege level: All
Note: The result is a 32-bit number of bits, using only one of the pair registers.

Intrinsic functions:

long __dsmaxdal6(long long t, unsigned long long a, unsigned long long b);

int32_t __v_dsmaxdal6(long long t, uintl6x4_t a, uintl6x4_t b);
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26.8.43 DKSMS32.u (Two Signed Multiply Shift-clip and Saturation with Rounding)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKSMS32.u Rs2 Rsl1 000 Rd custom-3
1100100 1111011

Syntax:

DKSMS32.u Rd, Rsl, Rs2

Purpose:
Computes saturated multiplication of two pairs of q31 type with shifted rounding.

Description: Compute the multiplication of Rs1 and Rs2 of type q31_t, intercept [47:16] for the resulting 64-bit product
to get the 32-bit number, then add 1 to it to do rounding, and finally saturate the result after rounding.

Operations:

Mres[x][63:0] = Rsl.W[x] s* Rs2.W[x];
Round[x][32:0] = Mres[x][47:15] + 1;
Rd.W[x] = sat.31(Rd.W[x] + Round[x][32:1]);

x=1...0

Exceptions: None
Privilege level: All

Note: Although the data type of Rs1, Rs2 and Rd is q31, the actual data range may only be 23 or even q13, just to avoid
introducing the concept of 24-bit, so the CPU can treat it as 32-bit data.

Intrinsic functions:

unsigned long long __dksms32_u(unsigned long long c, unsigned long long a, unsigned long.
—long b);

uint32x2_t __v_dksms32_u(uint32x2_t c, uint32x2_t a, uint32x2_t b);

26.8.44 DMADAS32 (Two Cross Signed 32x32 with 64-bit Add and Clip to 32-bit)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DMADA32 Rs2 Rsl1 000 Rd custom-3
1100101 1111011

Syntax:

DMADA32 Rd, Rsl, Rs2

Purpose:

Do two cross signed 32x32 and add the signed multiplication results to q63, then clip the q63 result to q31 , the final results
are written into Rd.
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Description:

For the “DMADA32” instruction, it multiplies the top 32-bit element in Rs1 with the bottom 32-bit element in Rs2 and
then adds the result to the result of multiplying the bottom 32-bit element in Rs1 with the top 32-bit element in Rs2, then
clip the q63 result to q31.

Operations:

res = (q31_t)((((q63_t) Rd.w[0] << 32) + (q63_t)Rsl.w[0] s* Rs2.w[l] + (q63_t)Rsl.w[1] s* ..
~Rs2.w[0]) s>> 32);

rd = res;

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long __dmada32(long long c, unsigned long long a, unsigned long long b);

int32_t __v_dmada32(int64_t c, int32x2_t a, int32x2_t b);

26.8.45 DSMALBB (Signed Multiply Bottom Halfs & Add 64-bit)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMALBB Rs2 Rsl 000 Rd custom-3
1101100 1111011
Syntax:

DSMALBB Rd, Rsl, Rs2

Purpose:

Multiply the signed 16-bit content of the 32-bit elements of a register with the 16-bit content of the corresponding 32-bit
elements of another register and add the results with a 64-bit value of an even/odd pair of registers (RV32) or a register
(RV64). The addition result is written back to the register-pair (RV32) or the register (RV64).

DSMALBSB: rt pair + bottom*bottom (all 32-bit elements)
Description:

For the “DSMALBB?” instruction, it multiplies the bottom 16-bit content of the 32-bit elements of Rs1 with the bottom
16-bit content of the 32-bit elements of Rs2.

The multiplication results are added with the 64-bit value of Rd. The 64-bit addition result is written back to Rd. The
16-bit values of Rs1 and Rs2, and the 64-bit value of Rd are treated as signed integers.

Operations:

Mres[0][31:0] = Rs1.W[O].H[0] * Rs2.W[O].H[O];

Mres[1][31:0]

Rs1.W[1].H[O®] * Rs2.W[1].H[O];

Rd = Rd + SE64(Mres[0][31:0]) + SE64(Mres[1][31:0]);

Exceptions: None

Privilege level: All
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Note: None

Intrinsic functions:

long long __dsmalbb(long long t, unsigned long long a, unsigned long long b);

int64_t __v_dsmalbb(int64_t t, intl6x4_t a, intl6x4_t b);

26.8.46 DSMALBT (Signed Multiply Bottom Half & Top Half & Add 64-bit)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMALBT Rs2 Rsl 000 Rd custom-3
1101101 1111011
Syntax:

DSMALBT Rd, Rsl, Rs2

Purpose:

Multiply the signed 16-bit content of the 32-bit elements of a register with the 16-bit content of the corresponding 32-bit
elements of another register and add the results with a 64-bit value of an even/odd pair of registers (RV32) or a register
(RV64). The addition result is written back to the register-pair (RV32) or the register (RV64).

DSMALBT rt pair + bottom*top (all 32-bit elements)
Description:

For the “DSMALBT” instruction, it multiplies the bottom 16-bit content of the 32-bit elements of Rs1 with the top 16-bit
content of the 32-bit elements of Rs2.

The multiplication results are added with the 64-bit value of Rd. The 64-bit addition result is written back to Rd. The
16-bit values of Rs1 and Rs2, and the 64-bit value of Rd are treated as signed integers.

Operations:

Mres[0][31:0] = Rs1.W[O].H[®] * Rs2.W[O].H[1];

Mres[1]1[31:0]

Rs1.W[1].H[®] * Rs2.W[1].H[1];

Rd = Rd + SE64(Mres[0][31:0]) + SE64(Mres[1][31:0]);

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dsmalbt(long long t, unsigned long long a, unsigned long long b);

int64_t __v_dsmalbt(int64_t t, intl6x4_t a, intl6x4_t b);
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26.8.47 DSMALTT (Signed Multiply Top Half & Add 64-bit)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DSMALTT Rs2 Rsl1 000 Rd custom-3
1101110 1111011

Syntax:

DSMALTT Rd, Rsl, Rs2

Purpose:

Multiply the signed 16-bit content of the 32-bit elements of a register with the 16-bit content of the corresponding 32-bit
elements of another register and add the results with a 64-bit value of an even/odd pair of registers (RV32) or a register
(RV64). The addition result is written back to the register-pair (RV32) or the register (RV64).

DSMALTT rt pair + top*top (all 32-bit elements)
Description:

For the “DSMALTT” instruction, it multiplies the top 16-bit content of the 32-bit elements of Rs1 with the top 16-bit
content of the 32-bit elements of Rs2.

The multiplication results are added with the 64-bit value of Rd. The 64-bit addition result is written back to Rd. The
16-bit values of Rs1 and Rs2, and the 64-bit value of Rd are treated as signed integers.

Operations:

Mres[0][31:0] Rs1.W[O].H[1] * Rs2.W[O].H[1];

Mres[1][31:0]

Rs1.W[1].H[1] * Rs2.W[1].H[1];

Rd = Rd + SE64(Mres[0][31:0]) + SE64(Mres[1]1[31:0]);

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dsmaltt(long long t, unsigned long long a, unsigned long long b);

int64_t __v_dsmaltt(int64_t t, intl16x4_t a, intl6x4_t b);

26.8.48 DKMABB32 (Saturating Signed Multiply Bottom Words & Add)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMABB32 Rs2 Rsl1 000 Rd custom-3
1101111 1111011

Syntax:

DKMABB32 Rd, Rsl, Rs2
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Purpose:

Multiply the signed 32-bit element in a register with the 32-bit element in another register and add the result to the content
of 64-bit data in the third register. The addition result may besaturated and is written to the third register.

DKMABB32: rd + bottom*bottom
Description:
For the “DKMABB32” instruction, it multiplies the bottom 32-bit element in Rs1 with the bottom 32-bit element in Rs2.

The multiplication result is added to the content of 64-bit data in Rd. If the addition result is beyond the Q63 number range
(-2%3 <= Q63 <= 2%-1), it is saturated to the range and the OV bit is set to 1. The result after saturation is written to Rd.
The 32-bit contents of Rs1 and Rs2 are treated as signed integers.

Operations:

res = Rd + (Rs1.W[O] * Rs2.W[0]);
if (res > (2763)-1) {

res = (2263)-1;

ov = 1;

} else if (res < -2463) {

res = -2263;
oV = 1;

}

Rd = res;

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dkmabb32(long long t, unsigned long long a, unsigned long long b);

int64_t __v_dkmabb32(int64_t t, int32x2_t a, int32x2_t b);

26.8.49 DKMABT32 (Saturating Signed Multiply Bottom & Top Words & Add)

Type: SIMD

Format:
31-25 24 -20 19-15 14-12 11-7 6-0
DKMABT32 Rs2 Rsl 000 Rd custom-3
1110000 1111011

Syntax:

DKMABT32 Rd, Rsl, Rs2

Purpose:

Multiply the signed 32-bit element in a register with the 32-bit element in another register and add the result to the content
of 64-bit data in the third register. The addition result may be saturated and is written to the third register.
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DKMABT?32: rd + bottom*top
Description:
For the “DKMABT32” instruction, it multiplies the bottom 32-bit element in Rs1 with the top 32-bit element in Rs2.

The multiplication result is added to the content of 64-bit data in Rd. If the addition result is beyond the Q63 number range
(-29 <= Q63 <= 2%3-1), it is saturated to the range and the OV bit is set to 1. The result after saturation is written to Rd.
The 32-bit contents of Rs1 and Rs2 are treated as signed integers.

Operations:

res = Rd + (Rs1.W[O] * Rs2.W[1]);
if (res > (2763)-1) {

res = (2263)-1;

oV = 1;

} else if (res < -2463) {

res = -2463;
oV = 1;

}

Rd = res;

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dkmabt32(long long t, unsigned long long a, unsigned long long b);

int64_t __v_dkmabt32(int64_t t, int32x2_t a, int32x2_t b);

26.8.50 DKMATT32 (Saturating Signed Multiply Top Words & Add)

Type: SIMD

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
DKMATT32 Rs2 Rsl 000 Rd custom-3
1110001 1111011
Syntax:

DKMATT32 Rd, Rsl, Rs2

Purpose:

Multiply the signed 32-bit element in a register with the 32-bit element in another register and add the result to the content
of 64-bit data in the third register. The addition result may be saturated and is written to the third register.

DKMATT32: rd + top*top

Description:
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For the “DKMATT32” instruction, it multiplies the top 32-bit element in Rs1 with the top 32-bit element in Rs2.

The multiplication result is added to the content of 64-bit data in Rd. If the addition result is beyond the Q63 number range
(-29 <= Q63 <= 2%-1), it is saturated to the range and the OV bit is set to 1. The result after saturation is written to Rd.
The 32-bit contents of Rs1 and Rs2 are treated as signed integers.

Operations:

res = Rd + (Rs1.W[t] * Rs2.W[1]);
if (res > (2763)-1) {

res = (2%63)-1;

ov = 1;

} else if (res < -2463) {

res = -2263;
oV = 1;

3

Rd = res;

Exceptions: None
Privilege level: All
Note: None

Intrinsic functions:

long long __dkmatt32(long long t, unsigned long long a, unsigned long long b);

int64_t __v_dkmatt32(int64_t t, int32x2_t a, int32x2_t b);
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Bit Manipulation Introduction

Nuclei processor core can optionally support the Bit Manipulation (B Extension) instructions. This document will not
detail it, please refer to RISC-V official document <riscv-spec-20240411.pdf> for the details.
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Scalar Entropy Source Introduction

Nuclei processor core can optionally support the Scalar Entropy Source (K Extension) instructions. This document will
not detail it, please refer to RISC-V official document <riscv-spec-20240411.pdf> for the details.
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Vector Introduction

Nuclei processor core can optionally support the Vector (V Extension) instructions. This document will not detail it, please
refer to <riscv-spec-20240411.pdf> and related Nuclei processor core’s Databook for the details.
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User Extended Instructions Introduction

30.1 Revision History

Rev. Revision Date Revised Content

1.0.0 2019/8/20 1.Initial release.

1.1.0 2019/12/20 1.Change Multi-Cycle Response Error to raise an exception (6.2).

1.2.0 2021/6/30 1.To support 64-bit wide NICE operands without needing the DSP
configuration.

1.3.0 2022/6/22 1.NICE dose not support custom-3 instructions.

1.4.0 2023/01/16 1.NICE support to access FPU register as operands. 2.Default using
the highest 3 bits of funct7 to do encoding.

1.5.0 2023/09/27 1.User can define the NICE instructions’s decoding.

1.6.0 2023/11/30 1.NICE interface data-width is same with LSU data-width.

1.7.0 2024/01/12 1.N900 support Floating/PAIR/MAC NICE.
2.NI900 support VNICE.

30.2 NICE Introduction

Nuclei all Series Cores support configurable NICE (Nuclei Instruction Co-unit Extension) to support extensive customiza-
tion and specialization. NICE allows customers to create user-defined instructions, enabling the integrations of custom
hardware co-units that improve domain-specific performance while reducing power consumption. For example, artificial
intelligence, could take the task of parameter training and model matching as an extension of the RISC-V kernel, which
can enhance the performance of the entire system.

Co-unit connected by the NICE interface protocol (Hereinafter referred to as NICE-Core) is an independent module outside
the Master Nuclei Core, so the NICE-Core can be turned off for reducing power while it is idle.

Nuclei Instruction Co-unit Extension supports the following features:
* Can be turned on/off through mstatus register.
* Support one-cycle transfer and multi-cycle transfer.

* Support 64-bit operation for one-cycle transfer when architecture is RV32 (also called NICE_PAIR, please refer to
configuration option in CFG_NICE_64BITS)

¢ Support NICE_MAC/NICE_FPU instructions (Currently 300 and 900 Series support this).

 Support flexible instructions as user can refine the decoding (Currently 300 and 900 Series support this).
* Support Vector NICE instructions (Currently 900 Series support this).

* Support blocking mode and non-blocking mode for multi-cycle transfer.

* Support memory access with ICB protocol.
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* Response error and memory access error observable and controllable.

30.3 NICE Instruction Format

NICE is a standard extension which means it should not conflict with any other RISC-V standard extensions. NICE
instructions are also part of RISC-V base instruction set.

inst[4:2] 111
1 000 001 010 011 100 101 110
inst[6:5] (»32b)
00 LOAD LOAD-FP Custom-0 | MISC-MEM OP-IMM AUIPC OP-IMM-32 486
01 STORE STORE-FP Custom-1 AMO ap LUl OP-32 645
10 MADD MSUB NMEUB NMADD OP-FP reserved custom-24vi28 488
1 BEANCH JALR reserved JAL SYSTEM reserved custom-3/rvi28 805

Fig. 30.1: RISC-V base opcode map, inst[1:0]=11

In the table, major opcodes marked as custom-0, custom-1, custom-2, and custom-3 are standard extensions and are rec-
ommended for custom instruction-set extensions within the base 32-bit instruction format. Principally, customers can use
these four custom instruction groups for NICE extensions. NICE instruction format (page 283) shows the detail of NICE
instruction format.

Note: Custom-2 and Custom-3 instructions will be used as XLCZ instructions if CPU support XLCZ.

31 25 24 20 19 15 14 13 12 11 7 6 0
l funct7 I 52 I sl I xd Ixsl IxsZ l rd I opcode ‘
7 5 5 1 1 1 5 7

Fig. 30.2: NICE instruction format

For the decoding the NICE instruction’s format, it supports two strategies: one is Default Decoding, the other is User
Redefined Decoding.

30.3.1 Default NICE Instruction Decoding

In NICE instruction format (page 283), once xd is set, the NICE instruction will write the result to destination register
whose number is encoded in rd filed when the instruction retires, otherwise, no write-back operation will go on. If xs/ or
xs2 is set, the NICE instruction will read the corresponding source register whose number is encoded in rs/ or rs2 field,
otherwise, no source register will be used.

The 7 bits of funct7, can encode instructions for each customer instruction group. Now we use the upper 3 bits to encoding
MAC/FPU/Pair type instructions as followed:

Setting bit 31th of NICE instruction (the bit 7 of funct7), it means this instruction is MAC type, it will use rd as rs3, while
0 means it is not MAC type.

Setting bit 30th of NICE instruction (the bit 6 of funct7) when NICE has configured with NICE_FPU, it means this instruc-
tion is FPU type instruction, all registers encoding target to FPU’s register; while O means it is Integer type instructions.
If the NICE is not configured with NICE_FPU, this bit is open for user.

Setting bit 29th of NICE instruction (the bit 5 of funct7) when NICE has configure NICE_64BITS, it means this instruction
is Pair type, it will use 64-bit contents of an even/odd pair of registers specified by rs1(4,1), 64-bit contents of an even/odd
pair of registers specified by rs2(4,1) and 64-bit contents of an even/odd pair of registers specified by Rd(4,1). xd, xs1, and
xs2 still control whether they are valid or not.

Other 4 bits of funct7 can be used as user demands. Besides, NICE could get more instructions when rs/, rs2 or rd filed
is not used.
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Note:

If the core has been configured DSP Module and DSP Module has been configured with Nuclei extended instructions,
please DO NOT use custom-3 opcode space, customer can refer <Nuclei_RISC-V_ISA_Spec.pdf> for detail or
contact Nuclei Support.

If the core has been configured Xlcz extension instructions, please DO NOT use custom-2 & custom-3 opcode space,
customer can refer <Nuclei_RISC-V_ISA_Spec.pdf> for detail or contact Nuclei Support.

FPU type NICE instruction is an option, please refer the related Databook to know it is supported or not or contact
Nuclei Support, and FPU NICE instruction dose not support One-Cycle Response.

Pair type NICE instruction in RV32 core is an option, please refer the related Databook to know it is supported or
not or contact Nuclei Support.

For N300 series core, the three type (MAC/FPU/Pair) can be mixed, but except both of FPU & Pair are set. When
Core has single FPU, and NICE support NICE_FPU, it can only do single floating compute in NICE too, when user
sets both FPU/Pair bits, then the hardware does not check Pair bit and Pair bit is open to user.

For N600/N90O series core, it is almost same with N300, but N600/N900 can’t support MAC & PAIR integer NICE
type as they only has 4 integer GPR read ports.

For 900 series core with Vector and VNICE feature, the default decoding is not working, it should use user redefined
decoding mechanism.

30.3.2 User Redefine NICE Instruction Decoding

If user want to add integer and floating instructions and need all space of xd, xs1, xs2 and funct7, also wants to encoding
the rsl, rs2 and rd more flexibly, just like rs/ is targeting to FPU register and rs2 is targeting to Integer GPR register and
needs pair independently. So we exposing the decoding module to customer , there is a file exu_nice_decode.v which is in
design/core can be edited by customer. The interface signals of this module is list as following code:

module cpu_exu_nice_decode(

);

input [32-1:0] i_instr,
output dec_nice_rsl_en,
output dec_nice_rsl_fpu,
output dec_nice_rsl_pair,

output dec_nice_rs2_en,
output dec_nice_rs2_fpu,
output dec_nice_rs2_pair,

output dec_nice_rd_mac,
output dec_nice_rd_en,
output dec_nice_rd_fpu,
output dec_nice_rd_pair,

output dec_nice_ilgl,
output nice_need_£fpu

As the output signals have some combinations we do not support, please refer following tables:

Table 30.2: Combinations Not Support

Instruction Type Combinations

Single-Cycle rd_pair 1
rd_fpu 1
rd_mac 1

continues on next page
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Table 30.2 — continued from previous page
Instruction Type Combinations
Single-Cycle rsl_en 1
rsl_pair 1
rsl_fpu 1
Single-Cycle rs2_en 1
rs2_pair 1
rs2_fpu 1
Single-Cycle rd_en 1
rd_fpu 1
Multi-Cycle rd_pair 1
rd_fpu 1
rd_mac 1
Multi-Cycle rsl_en 1
rsl_pair 1
rsl_fpu 1
Multi-Cycle rs2_en 1
rs2_pair 1
rs2_fpu 1
Multi-Cycle rd _en 1
rd_pair 1

Note:
e If user does not change this file/module, then it is the default encoding.
* When user edit this file/module, please refer the above table carefully or the behavior is undefined.

* If user does not configure NICE_PAIR_MAC in 300 Core RTL’s configurations (600 & 900 does not support this) ,
then rd_mac, rs1_pair, rs2_pair can’t output to 1.

* If user does not configure NICE_64BITS in 300/600/900 Core RTL’s configurations , then rs1_pair, rs2_pair and
rd_pair can’t output to 1.

* If user does not configure NICE_FPU in 300/600/900 Core RTL’s configurations , then rs1_fpu, rs2_fpu and rd_fpu
can’t output to 1.

e If user configures NICE-MAC in 600/900 Core RTL’s configurations, rs3 is through nice_req_rs1_1; While in 300,
and rs3 is through nice_req_rs3.

* If user configures NICE-PAIR in 600/900 Core RTL’s configurations, and it can’t support 1 cycle pair write back;
while in 300, it supports.

* If user configures NICE_FPU & Double FPU in 300/600/900 Core RTL’s configurations, it is always PAIR type,
rs1_1 & rsl is floating sourcel, rs2_1 & rs2 is floating source2, and NICE should write back rs3_1 & rs3 to represent
floating rd.

If user want to add vector custom instructions, the interface signals of this module is list as following code:

module cpu_exu_nice_decode(
input [32-1:0] i_instr,

output dec_vnice_opl_en,

output dec_vnice_opl_scalar_reg_fpu,
output dec_vnice_opl_scalar_reg_int,
output dec_vnice_opl_vector_reg,

output dec_vnice_op2_en,

output dec_vnice_rd_mac,
output dec_vnice_rd_en,

(continues on next page)
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(continued from previous page)

output dec_vnice_rd_scalar_reg_f£fpu,
output dec_vnice_rd_scalar_reg_int,
output dec_vnice_rd_vector_reg,
output dec_vnice_vm,
output dec_vnice_ilgl,
output dec_vnice_op,
output dec_nice_rsl_en,
output dec_nice_rsl_fpu,
output dec_nice_rsl_pair,
output dec_nice_rs2_en,
output dec_nice_rs2_fpu,
output dec_nice_rs2_pair,
output dec_nice_rd_mac,
output dec_nice_rd_en,
output dec_nice_rd_fpu,
output dec_nice_rd_pair,
output dec_nice_ilgl,
output nice_need_£fpu
DN
Table 30.3: VNICE_NICE_Decode_signals
Name Direction | Width Description
i_instr Input 32 32 bits instruction code.
dec_vnice_opl_en Output 1 Indicate this VNICE instruction need operand 1 (opl)
or not.
dec_vnice_opl_scalar_reg_fpu Output 1 The VNICE instruction’s op1 is from FPU.
dec_vnice_opl_scalar_reg_int Output 1 The VNICE instruction’s opl is from Integer GPR.
dec_vnice_opl_vector_reg Output 1 The VNICE instruction’s op1 is from Vector.
dec_vnice_op2_en Output 1 Indicate this VNICE instruction need operand 2 (op2)
or not.
dec_vnice_op2_scalar_reg_fpu Output 1 The VNICE instruction’s op2 is from FPU.
dec_vnice_op2_scalar_reg_int Output 1 The VNICE instruction’s op2 is from Integer GPR.
dec_vnice_op2_vector_reg Output 1 The VNICE instruction’s op2 is from Vector.
dec_vnice_rd_en Output 1 Indicate this VNICE instruction need rd or not.
dec_vnice_rd_scalar_reg_fpu Output 1 The VNICE instruction’s rd is from FPU.
dec_vnice_rd_scalar_reg_int Output 1 The VNICE instruction’s rd is from Integer GPR.
dec_vnice_rd_vector_reg Output 1 The VNICE instruction’s rd is from Vector.
dec_vnice_ilgl Output 1 Indicate this is an illegal VNICE instruction or not.
dec_vnice_op Output 1 Indicate this is a valid VNICE instruction or not.
dec_vnice_vm Output 1 Indicate this is a valid mask VNICE instruction and
need vO as mask.
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30.4 NICE and VNICE Interface Descriptions

This chapter describes the NICE and VNICE interface signals. It contains the following sections:

* NICE global signals

* NICE request channel signals

e NICE one-cycle response channel signals

* NICE multi-cycle response channel signals

* NICE memory request channel signals

e NICE memory response channel signals

VNICE signals

30.4.1 NICE Global Signals

Table 30.4: NICE_global_signals

Name Direction Width Description
nice_clk Output 1 Clock for NICE-Core
nice_rst_n Output 1 Reset for NICE-Core

30.4.2 NICE Request Channel Signals

Table 30.5: NICE_request_channel_signals

Name

Direction

Width

Description

nice_req_valid

Output

1

This signal indicates Master Core sends a nice request. It
should keep HIGH until nice_req_ready is set.

nice_req_ready

Input

This signal indicates NICE-Core can receive a nice re-
quest.

nice_req_instr

Output

32

The entire NICE instruction encoding from Master Core.
It should keep stable until nice_req_ready is set.

nice_req_rsl

Output

32/64

The value of source register 1. It should keep stable until
nice_req_ready is set.

nice_req_rs2

Output

32/64

The value of source register 2. It should keep stable until
nice_req_ready is set.

nice_req_rs3

Output

32/64

The value of source register 3 for MAC Type. It should
keep stable until nice_req_ready is set.

nice_req_rs1_1

Output

32

The value of odd register in pair registers rs1(4,1), the high
32-bit in 64-bit data.

Note: This signal exists only when CFG_NICE_64BITS
is configured

nice_req_rs2_1

Output

32

The value of odd register in pair registers rs2(4,1), the high
32-bit in 64-bit data.

Note: This signal exists only when CFG_NICE_64BITS
is configured

nice_req_rs3_1

Output

32

The value of odd register in pair registers rs3(4,1) for MAC
Type, the high 32-bit in 64-bit data.

Note: This signal exists only when CFG_NICE_64BITS
is configured.

nice_req_mmode

Output

This signal indicates the privilege mode of Master Core:
1: machine mode

0: non-machine mode

It should keep stable until nice_req_ready is set.

continues on next page
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Table 30.5 — continued from previous page

Name

Direction

Width

Description

nice_req_smode

Output

1

This signal indicates the privilege mode of Master Core:
1: Supervisor mode

0: one-supervisor mode

It should keep stable until nice_req_ready is set.

30.4.3 NICE One-Cycle Response Channel Signals

Table 30.6: NICE_one-cycle_response_channel_signals

Name

Direction

Width

Description

nice_rsp_lcyc_type

Input

1

This signal indicates current NICE instruction is a one-
cycle instruction and Master Core can get the result in
one cycle.

nice_rsp_lcyc_dat

Input

32/64

The result from NICE-Core in one-cycle response

nice_rsp_lcyc_dat_1

Input

32

The value of odd register in pair registers rd(4,1), the
high 32-bit in 64-bit data.

Note: This  signal  exists
CFG_NICE_64BITS is configured

only  when

nice_rsp_lcyc_err

Input

This signal indicates current one-cycle response has an
error and Master Core will take an illegal instruction
exception when detecting this signal HIGH.

Only support in 200 & 300.

30.4.4 NICE Multi-Cycle Response Channel Signals

Table 30.7: NICE_multi-cycle_response_channel_signals

Name Direction | Width Description

nice_rsp_multicyc_valid Input 1 This signal indicates NICE-Core sends a multi-
cycle response. It should keep HIGH until
nice_rsp_multicyc_ready is set.

nice_rsp_multicyc_ready Output 1 This signal indicates Master Core can receive multi-
cycle response.

nice_rsp_multicyc_dat Input 32/64 The result from NICE-Core in multi-cycle response.
It should keep stable until nice_rsp_multicyc_ready is
set.

nice_rsp_multicyc_err Input 1 This signal indicates current multi-cycle has an error
and Master Core won’t write the result to register file.

30.4.5 NICE Memory Request Channel Signals

Table 30.8: NICE_memory_request_channel_signals

Name

Direction

Width

Description

nice_icb_cmd_valid

Input

1

This signal indicates NICE-Core sends a memory ac-
cess request to Master Core. It should keep HIGH un-
til nice_icb_cmd_ready is set. Memory access request
should be sent during a multi-cycle transfer.

nice_icb_cmd_ready

Output

This signal indicates Master Core can receive memory
access request.

nice_icb_cmd_addr

Input

32/64

The address of memory access request. It should keep
stable until nice_icb_cmd_ready is set.

continues on next page
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Table 30.8 — continued from previous page

Name Direction | Width Description

nice_icb_cmd_read Input 1 Write or Read of memory access request:
0:Write
1:Read
It should keep stable until nice_icb_cmd_ready is set.

nice_icb_cmd_wdata Input M The write data of memory write request. It should keep
stable until nice_icb_cmd_ready is set, data-width is
same of Core’s LSU.

nice_icb_cmd_size Input 2 The size of memory access request:
2’b00: byte
2’b01: half-word
2’b10: word
2’b11: reserved
It should keep stable until nice_icb_cmd_ready is set.
Note: NICE does not support misaligned access.

nice_icb_cmd_mmode Input 1 The privilege mode is M-mode of memory access re-
quest. It should keep stable until nice_icb_cmd_ready
is set.

nice_icb_cmd_smode Input 1 The privilege mode is S-mode of memory access re-
quest. It should keep stable until nice_icb_cmd_ready
is set.

nice_mem_holdup Input 1 This signal helps NICE-Core occupy LSU pipe of
Master Core for stalling next load and store instruc-
tion. This signal should be set one cycle after NICE-
Core receives multi-cycle NICE instruction which in-
cludes memory operation and cleared after all memory
accesses are done.

30.4.6 NICE Memory Response Channel Signals

Table 30.9: NICE_memory_response_channel_signals

Name Direction | Width Description

nice_icb_rsp_valid Output 1 This signal indicates Master Core sends a memory ac-
cess response to NICE-Core. It should keep HIGH un-
til nice_icb_rsp_ready is set.

nice_icb_rsp_ready Input 1 This signal indicates NICE-Core can receive memory
access response.

nice_icb_rsp_rdata Output M The read data of memory access. It should keep stable
until nice_icb_rsp_ready is set, data-width is same of
Core’s LSU.

nice_icb_rsp_err Output 1 This signal indicates an error is detected during mem-
ory access of Master Core.

30.4.7 VNICE Channel Signals

Table 30.10: VNICE_channel_signals

Name Direction Width Description

vnice_req_valid Output 1 This signal indicates Master Core sends a vnice request.
It should keep HIGH until vnice_req_ready is set.

vnice_req_ready Input 1 This signal indicates VNICE-Core can receive a vnice re-
quest.

vnice_req_instr Output 32 The entire VNICE instruction encoding from Master Core.
It should keep stable until vnice_req_ready is set.

continues on next page
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Table 30.10 — continued from previous page

Name Direction Width Description
vnice_beat Output 2 Indicate the vnice transaction’s begin or end.
When Imul > 1, 01 means first Imul transaction; 00 means
middle ; 10 means last.
When Imul <= 1, 11 means only 1 transactions.
vnice_element_active Output vlen/8 Indicate the elements of vector rs1/rs2/rs3 element is ac-
tive or not.
One bit means one element, so the valid bit num of this
signal is vlen/sew, the higher bits beyond the valid bits are
0.
vnice_csr_vlmul Output 3 Indicate the Imul of Vector vimul csr.
vnice_csr_vsew Output 3 Indicate the sew of Vector vsew csr.
vnice_rounding_mode Output 2 Indicate the integer rounding mode of Vector vxrm csr.
vnice_fpu_rounding_mode | Output 2 Indicate the floating rounding mode of FPU frm csr.
vnice_vs1 Output vlen The value of source vector register 1.
vnice_vs2 Output vlen The value of source vector register 2.
vnice_vd Output vlen The value of source vector register 3 if it is vector MAC
type.
vnice_wbck_valid Input 1 The vnice_core’s valid signal.
vnice_wbck_ready Output 1 The ready output rsp signal to vnice_core.
vnice_wbck_wdata Input vlen The vnice_core’s compute result to write back.
vnice_wbck_vxsat Input 1 Indicate the vnice_core’s fix-point computing has satura-
tion flag or not.
vnice_wbck_{fllag Input 1 Indicate the vnice_core’s floating computing has excep-
tion flag or not.

30.5 NICE and VNICE Transfer

NICE instructions can be sent to NICE-Core (including VNICE-Core)) only when mstatus.xs is NOT Zero, otherwise, an
illegal instruction exception will be raised.

Before instruction sent to NICE-Core through the NICE/VNICE interface, it is decoded by the Master Core and marked
as a NICE/VNICE instruction, at the same time rs1 and rs2 registers are read for the NICE/VNICE interface if needed.

While NICE/VNICE instruction has a dependency on previous unfinished instruction including common instruction or
another NICE/VNICE instruction, the pipeline would be stalled until the dependency is eliminate With this mechanism,
NICE/VNICE instruction behaves just like a common instruction from the Master Core side.

NICE request channel confirms a transfer by nice_req_valid and nice_req_ready handshaking. nice_req_valid and other
request information should keep stable until nice_req_ready signal is HIGH.

VNICE request channel confirms a transfer by vnice_valid and vnice_ready handshaking. vnice_valid and other request
information should keep stable until vnice_ready signal is HIGH.

The NICE response might return through the one-cycle channel or multi-cycle channel, which depends on the implemen-
tation of the NICE-Core.

The VNICE response might return through the one-cycle channel or multi-cycle channel, it uses vnice_wbck_valid and
vnice_wbck_ready handshaking.
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30.5.1 One-Cycle Response for NICE
If the NICE-Core can execute the instruction in one cycle, it sends the response to Master Core through one-cycle response
channel, with or without data. In this way, nice_rsp_Icyc_type and nice_rsp_Icyc_rdat should keep for one cycle.

One-Cycle NICE Response with Data (page 291) shows a one-cycle response with data.

ok [ L L L L L L L L L
nice_req_valid /_\ //
nice_req_ready / //
nice_req_inst 7 X inst X %%
nice_req_rst 7 151 X7 Y%
nice_req_rs2 7 rs2 X7 9
nice_rsq_1cyc_type /_\ //
nice_rsq_1cyc_dat 7\ dat X 9

nice_rsq_1cyc_err //
nice_rsq_multicyc_valid //
nice_rsq_multicyc_ready //
nice_rsq_multicyc_dat //

Fig. 30.3: One-Cycle NICE Response with Data

30.5.2 Multi-Cycle Response for NICE

If NICE-Core needs more cycles to get the result (for example, huge computation or memory access. Please refer to NICE
and VNICE Memory Access (page 293) for memory access operation), it sends the response to Master Core through the
multi-cycle response channel.

There are two operation modes for NICE multi-cycle instruction: blocking mode and non-blocking mode. Blocking
mode will clear nice_req_ready for stalling new NICE request until the current NICE transfer is done. Non-blocking
mode, however, can receive a new NICE request no matter current NICE transaction is finished or not.

30.5.2.1 Multi-Cycle Blocking Mode

NICE multi-cycle blocking mode transfer (page 292) shows a multi-cycle blocking mode transfer with rs1, rs2, and rd valid.
In this case, after the nice_req_valid and nice_req_ready handshake successfully, NICE-Core keeps nice_req_ready LOW
until the data is ready to be written back.
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L Iy I 5 I B I I
nice_req_valid /_\ //
nice_req_ready /_\ // /
nice_req_inst N\ inst X771/
nice_req_rs1 %( rsi V %V
nice_req_rs2 %( rs2 V %V

nice_rsq_1cyc_type //
nice_rsq_1cyc_dat %V
nice_rsq_1cyc_err //
nice_rsq_multicyc_valid // /_\
nice_rsq_multicyc_ready // /
nice_rsq_multicyc_dat %/ %( dat )W
nice_rsq_multicyc_err //

Fig. 30.4: NICE multi-cycle blocking mode transfer

30.5.2.2 Multi-Cycle Non-Blocking Mode

NICE multi-cycle non-blocking mode transfer without delay (page 292) shows four multi-cycle non-blocking mode trans-
fers. In this case, NICE-Core can receive a new transfer while the previous transfer is still being processed. Each transfer
needs four cycles to be done and sent the response, and because Master Core supports at most six outstanding transfer
which is defined by RTL implementation, Master Core can send nice request contiguously without delay.

nigliplipipipglininipiplinlinlydnl
nice_req_valid / \ //
nice_req_ready / //
nice_req_instr %(insto)(inst1Xinst2Xinst3Xinst4V %/
nice_req_rs1 %( rsi X rsi X rsi X rsi X rsi )W %/
nice_req_rs2 %( rs2 X rs2 X rs2 X rs2 X rs2 )W %/

nice_rsp_1cyc_type //
nice_rsp_1cyc_dat %/
nice_rsp_1icyc_err //
nice_rsp_multicyc_valid // / \_/)L
nice_rsp_multicyc_ready // / //
nice_rsp_multicyc_dat %/ %( datOX dat1 Xdat2 X dat3 X dat4 )W %/
nice_rsp_multicyc_err // //

Fig. 30.5: NICE multi-cycle non-blocking mode transfer without delay

NICE multi-cycle non-blocking mode transfer with delay (page 293) shows four multi-cycle non-blocking transfer within
eight cycles. In this case, NICE-Core can receive new transfer while the previous transfer is still being processed. Each
transfer needs eight cycles to be done and sent response, but because Master Core supports at most four outstanding
transfers, nice_req_valid must keep LOW while four NICE transfers are all being processed, until Master Core gets a
response.
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Selipinigigigigigigiyigigiginint
nice_req_valid / \ L/_\
nice_req_ready / //
nice_req_inst 7 Ainst0)inst1)inst2)inst3 X inst4 [/ V%
nice_req_rs1 %( rsi X rsi X rsi X rsi X rsi // V
nice_req_rs2 7 X rs2 X rs2 ) rs2 X rs2 X rs2 | V%

nice_rsp_1cyc_type //
nice_rsp_1cyc_dat %V
nice_rsp_1cyc_err //

nice_rsp_multicyc_valid /Z / \_
nice_rsp_multicyc_ready /Z /
nice_rsp_multicyc_dat %@( dat0 X dat1) dat2 ) dat3 X/

nice_rsp_multicyc_err //

Fig. 30.6: NICE multi-cycle non-blocking mode transfer with delay

30.5.3 Response for VNICE

The VNICE response mechanism is the same of multi-cycle response of NICE.

30.6 NICE and VNICE Memory Access

Generally, NICE-Core can access memory via the NICE interface, and the operation should be included in a multi-cycle
transfer. While a multi-cycle transfer is going to access memory,

the nice_mem_holdup should raise one cycle after nice_req_valid and nice_req_ready handshaking, and keep HIGH until
NICE-Core finishes all nice memory accesses. This mechanism blocks the following load and store instruction, which
can avoid some deadlock scenarios. With the help of nice_mem_holdup, NICE-Core can kick off one or several memory
accesses at any time before the multi-cycle transfer is finished.

NICE accesses memory by ICB protocol. The ICB protocol contains command channel and response channel.

In the command channel, NICE-Core sends ICB request including nice_icb_cmd_valid, nice_icb_cmd_addr,
nice_icb_cmd_size and nice_icb_cmd_read, then these signals are waiting for nice_icb_cmd_ready from Master Core.
Once valid-ready handshakes successfully, Master Core processes the memory access operation with its LSU pipe.

In the response channel, Master Core sends nice_icb_rsp_valid, and nice_icb_rsp_rdata if it is a read operation, to NICE-
Core and waits for nice_icb_rsp_ready.

nice_req_mmode indicates the current privilege mode in Master Core when a nice request is sent, and
nice_icb_cmd_mmode should be the same mode with it when NICE-Core sends memory access request.

Note: NICE doesn’t support misaligned memory access.

30.6. NICE and VNICE Memory Access 293



Nuclei® RISC-V Instruction Set Architecture Specification

30.6.1 Single Memory Access Operation in Multi-Cycle Transfer

30.6.1.1 Single Memory Read Operation in Multi-Cycle Transfer

Single memory read operation in multi-cycle transfer (page 294) shows a single memory read operation in multi-cycle

transfer.

nice_req_valid
nice_req_ready
nice_req_inst
nice_req_rs1
nice_req_rs2
nice_req_mmoode
nice_rsp_multicyc_valid
nice_rsp_multicyc_ready
nice_rsp_multicyc_dat
nice_rsp_multicyc_err
nice_mem_holdup
nice_icb_cmd_valid
nice_icb_cmd_ready
nice_icb_cmd_read
nice_icb_cmd_addr
nice_icb_cmd_size
nice_icb_cmd_mmode
nice_icb_rsp_valid
nice_icb_rsp_ready
nice_icb_rsp_rdata

nice_icb_rsp_err

Fig. 30.7: Single memory read operation in multi-cycle transfer
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30.6.1.2 Single Memory Write Operation in Multi-Cycle Transfer

Single memory write operation in multi-cycle transfer (page 295) shows single memory write operation in multi-cycle

transfer.
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L I A I I

nice_req_valid

/

nice_req_ready

[\
[\

I /

nice_req_inst

%( inst )W

2%

nice_req_rs1

%(rsﬂ%

%)%
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/
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J
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[/
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%@vdat%

%)%

nice_icb_cmd_size

%( size )W
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/
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/
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Fig. 30.8: Single memory write operation in multi-cycle transfer

30.6.2 Multiple Memory Access Operation in Multi-Cycle Transfer

Several memory accesses including read and write operation (page 296) shows several memory accesses including read and
write operations in a multi-cycle transfer. The Maximum num of ICB outstanding transfer depends on the implementation

of NICE-Core.
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I /0 B

nice_req_valid /_\ //
nice_req_ready /_\ // /
nice_req_inst %( inst )W %V
nice_req_rs1 %( rs1 )W %V
nice_req_rs2 %( rs2 )W %V
nice_req_mmoode /_\ //
nice_rsp_multicyc_valid L/_\
nice_rsp_multicyc_ready L/
nice_rsp_multicyc_dat %@( dat )W
nice_rsp_multicyc_err //
nice_mem_holdup /—\ //
nice_icb_cmd_valid 4/—\ //
nice_icb_cmd_ready 4/—\ //
nice_icb_cmd_mmode 4/—\ //
nice_icb_cmd_read /_\ /_\ //
nice_icb_cmd_addr %(addr)(addr)(addr% %/
nice_icb_cmd_wdata 7 Mwdata(/ %%
nice_icb_rsp_valid /—\ //
nice_icb_rsp_ready /—\ //
nice_icb_rsp_rdata %(rdata% %(rdata% %/

nice_icb_rsp_err //

Fig. 30.9: Several memory accesses including read and write operation

30.6.3 VNICE Memory Access

The VNICE-Core can access memory via the NICE interface too, the mechanism is same with NICE-Core.

30.7 NICE and VNICE Response Error

NICE-Core can send an error response to Master Core when it detects any error. There are two error types: one-cycle
response error and multi-cycle response error.

30.7.1 One-Cycle Response Error

For one-cycle response error, it probably should be an illegal instruction found by NICE-Core. nice_req_Icyc_err signal
will keep one cycle with nice_req_Icyc_type. When the Master Core receives the one-cycle response, an illegal instruction
exception will be raised.

One-cycle response error (page 297) shows one-cycle response error.
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Fig. 30.10: One-cycle response error

30.7.2 Multi-Cycle Response Error

For multi-cycle response error, it could be a memory access error or multi-cycle execution error. Multi-cycle response
error (page 297) shows a memory access error scenario. Master Core sends nice_ich_rsp_err to NICE-Core for each
corresponding memory access response, then NICE-Core sends one cycle nice_rsp_multicyc_err to Master Core at multi-
cycle response phase.

While the Master Core receives nice_rsp_multicyc_err, the result won’t be written back to register file. Additionally, a
load access fault exception will be raised(Exception Code =5) and mdcause will be set to 3.

I/ o
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nice_req_inst
nice_req_rs1
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nice_req_mmoode
nice_rsp_multicyc_valid
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nice_rsp_multicyc_dat
nice_rsp_multicyc_err

nice_mem_holdup

nice_icb_cmd_valid 4/—\
nice_icb_cmd_ready 4/—\
nice_icb_cmd_read 4/—\
nice_icb_cmd_mmode 4/—\

nice_icb_cmd_addr

nice_icb_rsp_valid
nice_icb_rsp_ready
nice_icb_rsp_rdata

nice_icb_rsp_err
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Fig. 30.11: Multi-cycle response error
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Note: Currently 900 Series Core can’t not support NICE One-Cycle Response Error, if there is error happened, please
use Multi_Cycle Response Error instead.

30.7.3 VNICE Response Error

For VNICE, it uses user-defined decoding, so if there is illegal instruction error, it is detected and reported in decoding
stage. If the VNICE-Core has computing error, it can use vnice_wbck_vstat and vnice_wbck_fflag to report, or it can
consider to send interrupt to master core.

30.8 NICE and VNICE Demo Introduction

This chapter shows a NICE demo to explain the usage of NICE. The NICE demo includes hardware and software parts.
For hardware, the NICE-Core is included in Nuclei RTL package and the main function is to sum a 3x3 matrix for each
row and column. For software, please refer to NICE Software Environment (page 299).

The demo demonstrates a few instructions for mainly introducing the function of the NICE-Core and how to use these
extended NICE instructions in software as well as the compiler.

30.8.1 Instruction In NICE Demo

This NICE Demo implements the following 3 instructions for NICE-Core.

Table 30.11: Instructions for NICE-Core

Instruction Description Encoding
CLW Load 12-byte data from memory to row | opcode:0x5b, custom-2
buffer. xd:0, no write-back register

xsl:1, rs1 is vaild for load address
xs2:0, rs2 is invalid

funct7:1
CSW Store 12-byte data from row buffer to | opcode:0x5b, custom-2
memory. xd:0, no write-back register
xsl:1, rs1 is valid for store address
xs2:0
funct7:2
CACC Sums a row of the matrix, and columns | opcode:0x5b, custom-2
are accumulated automatically. xd:1, rd is valid for write-back register

xs1:1, rs1 is valid for the first address of a row
xs2:0, rs2 is invalid
funct7:6

In this NICE-Core, there is a 12-byte row buffer for saving the accumulated results of three columns. Before the operation
of summing the matrix, the row buffer should be cleared with CLW instruction.

CACC instruction loads and accumulates all elements of a row one by one from memory and the result will be written
back to register file directly. In addition, the columns are accumulated automatically for each CACC instruction and the
results are saved in the row buffer in the NICE core. The behavior of CACC instruction (page 299) shows the behavior of
CACC instruction
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memory
addr addr+4 addr+8
reg_file
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row_buffer 1 1
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Fig. 30.12: The behavior of CACC instruction

After all summing operations are done, the row buffer could be written back to memory by CSW instruction.

30.8.2 NICE Software Environment

30.8.2.1 SDK Environment

The software environment used in this demo follows the Nuclei public SDK environment(https://github.com/
Nuclei-Software/nuclei-sdk). Users could download the public software environment which contains some basic demo
tests. After that, users can build the software environment based on the existing hello_world project, or create a new one
according to the hello_world directory structure. This demo takes the first one, and names the project demo_nice.

30.8.2.2 Inline Assembly For User-defined Instruction

In this section, the CACC instruction will be an example to illustrate the usage of inline assembly. From Instruction In
NICE Demo (page 298), we know that CACC is an R-type instruction and R-type instruction format (page 299) shows its
format.

31 25 24 20 19 15 14 12 11 7 6 0

func7 | rs2 | rsl | func3 | rd | opcode ‘

Fig. 30.13: R-type instruction format

All user-defined instructions in the assembler are implemented by the pseudo instruction .insn. Following is the usage of
pseudo instruction .insn for R-type.

.insn r opcode, func3, func7 , rd, rsl, rs2

For CACC instruction, the inline assembly function is as below.

inline int custom_rowsum(int addr)

{

int rowsum;

(continues on next page)
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(continued from previous page)

asm volatile (
".insn r 0x5b, 6, 6, %0, %1, x0"
:"'=r" (rowsum)
:"r'" (addr)

s

return rowsum;

custom _rowsum is the C function containing the CACC instruction. The function has an input and an output variable,
respectively, corresponding to the starting address of a row of the matrix in the memory and the sum of the row elements.

The assembly part is contained in the asm volatile block. The %0 indicates the output register whose value is reflected in
the rowsum variable and register number is automatically assigned by the compiler. %1 indicates the input register whose
value is reflected in the addr variable and the register number is automatically assigned by the compiler.

“insn’ and ‘r’ indicates this is a pseudo and R-type instruction. ‘Ox5b’ is the value of the opcode field, which means it is a
NICE instruction belonging to custom-2. The first ‘6’ is the value of func3 field, which means the destination and source
1 register are valid. The second ‘6’ is the value of func7 field, indicating it is a CACC instruction.

This inline assembly function will sum all elements in a row, and the result will be written back to register file directly.
In addition, the columns are accumulated automatically for each custom_rowsum function and the results are saved in the
buffer in the NICE core. The data of the buffer can be written back to memory with CSW instruction. Before the operation
of summing the matrix, the buffer should be cleared with CLW instruction.

The following are the other two inline assembly functions.

CLW:

inline void custom_lbuf(int addr)

int zero = 0;

asm volatile (
".insn r Ox5b, 2, 1, x0, %1, x0"
:"=r" (zero)

:"r"(addr)

CSW:

// custom sbuf

inline void custom_sbuf(int addr)

(continues on next page)
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(continued from previous page)

int zero = 0;

asm volatile (
".insn r Ox5b, 2, 2, x0, %1, x0"
:"=r" (zero)
:"r'" (addr)

)

30.8.2.3 Call Inline Assembly Function

The sum algorithm for row and column of the matrix is very simple. The conventional algorithm might be implemented
by using two layers of for loops as shown below. i and j represent the number of rows and columns. row_sum and col_sum
represent the sum of rows and columns.

// normal test case without NICE accelerator.

void normal_case(unsigned int array[ROW_LEN][COL_LEN], unsigned int col_sum[COL_LEN],..
—unsigned int row_sum[ROW_LEN])

{
inti =0, j=0;
unsigned int tmp = 0;
for (i = 0; 1 < ROW_LEN; i++) {
tmp = 0;
for (j = 0; j < COL_LEN; j++) {
col_sum[j] += array[i][j];
tmp += array[i][j];
}
row_sum[i] = tmp;
}
}

The NICE algorithm compresses some operations and reduces some unnecessary loading and writing back operations,
hence it has a faster execution speed. The following code shows the NICE algorithm. i represents the number of rows.
row_sum and col_sum represent the sum of rows and columns. All the above inline assembly functions can be called
directly in the C function.

// teat case using NICE accelerator.
void nice_case(unsigned int array[ROW_LEN][COL_LEN], unsigned int col_sum[COL_LEN],.
—unsigned int row_sum[ROW_LEN])
{
int i;
unsigned long init_buf[COL_LEN] = {0};

custom_lbuf(init_buf);
for (i = 0; i < ROW_LEN; i++) {
row_sum[i] = custom_rowsum((unsigned long*)array[i]);

}

(continues on next page)
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(continued from previous page)

custom_sbuf((unsigned long*)col_sum);

}

In this demo, for comparing the performance, the conventional algorithm and the NICE algorithm are both tested.

30.8.2.4 Main Function And Makefile

The main function in demo_nice.c file mainly initializes the test environment, including:
* Matrix initialization
* Enable NICE-Core
* Enable performance evaluation function
* Call two sum functions, and report the result of performance comparison.

The makefile script in the project has some changes, including adding insn.c file, which contains all inline assembly
function, and adding -fgnu89-line in CFLAGS to support inline assembly function.

There are only several files in the whole project: Makefile, demo_nice.c, insn.c and insn.h. Users can compile the project
to get the executable file and make it run in the processor with the NICE-Core.

30.8.2.5 Result Analysis

The result of NICE demo (page 303) shows the result of NICE demo test. The test contains both the conventional algorithm
and the NICE optimization algorithm to calculate the 3x3 matrix. The optimization options are disabled and the debug
information is enabled during the compilation process. As can be seen from the figure, the NICE optimization code
functions correctly, and comparing to the conventional result, it has a significant reduction in the number of instructions
and the operating cycle.
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kR kR ek ek sk ke sk Rk ek Rk sk sk sk sk sk sk ke kR sk kR ok

** begin to sum the array using ordinary add sum
the element of array is :
10 20 30

20 30 40
30 40 50
the sum of each row 1is :
60 90 120
the sum of each col 1is :
60 90 120

sk R R R sk R o sk s R R s R s o o R e R R s sk e R e R kR R kR R

** pegin to sum the array using nice add sum
the element of array 1is

10 20 30
20 30 40
30 40 50
the sum of each row is :
60 90 120
the sum of each col is :
60 90 120

Fekkkckk ek ek ke sk ek sk e sk ke e sk sk e sk ke sk sk ke e sk ok R kR ok

** performance list
normal:
instret: 21119, cycle: 29624
nice
instret: 20710, cycle: 29091

Fekkkckk ek ek ke sk ek sk e sk ke e sk sk e sk ke sk sk ke e sk ok R kR ok

Fig. 30.14: The result of NICE demo

Performance at different optimization level (page 303) shows the performance at different optimization levels of the com-
piler toolchain.

The O0+Debug indicates that the Debug information output is enabled and the compiler optimization option is disabled,
and the remaining four items respectively correspond to the different optimization levels of the compiler tool with debug
information disabled.

00 00+Debug o0 o1 02 [9k]
01 Instruction Cycle Instruction Cycle Instruction Cycle Instruction Cyele Instruction Cycle
number number number number number number number number number number
Convention 21119 29624 634 859 411 532 391 511 391 512
NICE 20710 29091 247 334 20 133 86 128 86 123

Fig. 30.15: Performance at different optimization level

As can be seen from the result, the NICE core does improve the performance of the RISC-V core in this application, and
it is foreseeable that the larger the matrix, the better the performance.
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30.8.3 VNICE Demo Introduction

The VNICE demo to explain the usage of VNICE. The VNICE demo includes hardware and software parts. For hardware,
the VNICE-Core is included in Nuclei RTL package and the main function is to use its VNP port to load data from external
memory to Vector’s registers, then do a complex multiply and store the results in Vector registers through its VNP port to
external memory.

For the software demo, please contact Nuclei Support.
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1.First version as the full English

31.2 Nuclei Additional Xlcz Instruction for Codesize

31.2.1 Code master table

Table 31.2: The summary is as follows

31~12 11-7 6-0 Type
xL.1b 0000 | imm][7:0] rs1(!rd) 001 | rd 1111011 | cust3 | Auto-
x1.1bu 0001 imm][7:0] rs1(!rd) rd 1111011 | cust3 | matic
xL.lh 0010 | imm([8:1] rs1(!rd) rd 1111011 | cust3
x1.1hu 0011 | imm[8:1] rs1(!rd) rd 1111011 | cust3
xl.lw 0100 | imm[9:2] rs1(!rd) rd 1111011 cust3
xl.sb 0101 imm][7:5] rs2 rsl imm[4:0] 1111011 cust3
xl.sh 0110 | imm[8:6] rs2 rsl imm[5:1] 1111011 | cust3
xL.sw 0111 imm([9:7] rs2 rsl imm[6:2] 1111011 cust3
xl.lwu 1000 | imm[9:2] rs1(!rd) rd 1111011 | cust3
(rv64)
x1.1d 1001 imm[10:3] rs1(!rd) rd 1111011 | cust3
(rv64)
xl.sd(rv64) | 1010 imm[10:8] | rs2 rsl imm|[7:3] 1111011 cust3
xl.lgp.b 00 imm[15:0] 00 | rd 1011011 | cust2 | Assembly
xl.1gp.bu 01 imm[15:0] 00 | rd 1011011 | cust2 | only
xl.1gp.h 00 imm[15:1] 001 | d 1011011 | cust2
xl.1gp.hu 00 imm[15:1] 101 | rd 1011011 | cust2
xl.Igp.w 00 imm[16:2] 010 | rd 1011011 | cust2
xLIgp.wu | 00 imm[16:2] 110 | rd 1011011 | cust2
(rv64)
xl.1gp.d 00 imm[17:3] 011 | d 1011011 | cust2
(rv6d)
xl.sgp.b 11 imm[15:11] | rs2 imm[10:5] | 00 imm{[4:0] 1011011 | cust2
xl.sgp.h 10 imm[15:11] | rs2 imm[10:6] | 001 | imm[5:1] 1011011 | cust2
xl.sgp.w 10 imm[16:12] | rs2 imm[11:7]| 010 | imm[6:2] 1011011 cust2
xl.sgp.d 10 imm[17:13] | rs2 imm[12:8]| 011 | imm[7:3] 1011011 | cust2
(rv6d)

continues on next page
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Table 31.2 — continued from previous page

xl.addrchk | O imm[10:5] | rs2 rsl 011 | imm[4:1]11]| 1111011 | cust3 | Api
xl.bezm 1 imm[10:5] | rs2 rsl 011 | imm[4:1|11]| 1111011 cust3
xl.nzmsk 1110000 00000 rsl 001 | rd 1111011 | cust3
x1.ffnz 1110001 00000 rsl 001 | rd 1111011 | cust3
xl.beqi offset[12]10:5] imm[4:0] rsl 010 | off- 1111011 | cust3 | Auto-
set[4:1|11] matic
x1.bnei offset[12]10:5] imm[4:0] rsl 100 | oft- 1111011 | cust3
set[4:1]11]

x1.muli 110 imm [8:5] imm{[4:0] rsl 001 | rd 1111011 | uust3
xl.addibne | 1 scale[1:0] uimm([9:1] | rsl 111 | rd 1111011 | cust3
xL.slet 1110011 rs2 rsl 001 | rd 1111011 | cust3 | Api
xl.sletu 1110100 rs2 rsl 001 | rd 1111011 cust3
xl.extract 00 uimm3[4:0] | uimm2[4:0] | rsl 101 | rd 1111011 | cust3
xl.extractr | 01 00000 rs2 rsl rd 1111011 | cust3
xl.extractu | 10 uimm3[4:0] | uimm2[4:0] | rsl rd 1111011 | cust3
xl.extractur| 11 00000 rs2 rsl rd 1111011 | cust3
xl.insert 00 uimm3[4:0] | vimm?2[4:0] | rsl 110 | rd 1111011 cust3
x1.bset 10 uimm3[4:0] | vimm2[4:0] | rsl rd 1111011 | cust3
xl.bsetr 11 00000 rs2 rsl rd 1111011 | cust3
xL.bclr 00 uimm3[4:0] | uimm?2[4:0] | rsl 111 | rd 1111011 cust3
xL.bclrr 01 00000 rs2 rsl rd 1111011 | cust3
xl.clb 1110101 00000 rsl 001 | rd 1111011 | cust3
x1.f11 1110110 00000 rsl rd 1111011 | cust3
x1.ff1 1110111 00000 rsl rd 1111011 | cust3
x1.f10 1111000 00000 rsl rd 1111011 cust3
x1.ff0 1111001 00000 rsl rd 1111011 | cust3
xl.bitrev 10110 \ uimm3[1:0] | uimm2[4:0] | rsl rd 1111011 | cust3
x1.flh 0101 imm([8:1] rsl 101 | rd(freg) 1111011 | cust3 | assembly
x1flw 0110 imm[9:2] rsl rd(freg) 1111011 cust3 | only
x1.fld o111 imm[10:3] | rsl rd(freg) 1111011 | cust3
xl.fsh 1101 imm([8:6] rs2(freg) rsl imm[5;1] 1111011 cust3
x1.fsw 1110 | imm[9:7] rs2(freg) rsl imm[6:2] 1111011 | cust3
x1.fsd 1111 imm[10:8] | rs2(freg) rsl imm([7:3] 1111011 | cust3

Note: Xlcz extension is currently supported by 300 Series Core v4.1.0 and later version.

31.2.2 xl.Ib

Format:
31-28 27 - 20 19-15 14-12 11-7 6-0 Type
0000 imm([7:0] | rs1(!=rd) 001 rd 1111011 cust3

Syntar:

x1.1b rd,imm(rsl)

Description:

This instruction implements loading single-byte signed data from the storage space at the address specified by rs1, while
the base is updated to (rs1+imm). The destination address is specified by rs1.

Operations:

rd = Sext (Mem8(rstl)) ;

rsl += imm[7:0] ;
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Exceptions:

Unaligned exception, illegal instruction exception

31.2.3 xl.lbu

Format:
31-28 27 - 20 19-15 14-12 11-7 6-0 Type
0001 imm([7:0] | rs1(!=rd) 001 rd 1111011 cust3
Syntar:

x1.1bu rd,imm(rsl)

Description:

This instruction implements loading single-byte unsigned data from a storage space at a specified address,At the same
time, the base is updated to (rs1+imm).The destination address is specified by rs1.

Operations:

rd = Zext(Mem8(rstl));

rsl += imm[7:0];

Exceptions:

Unaligned exception, illegal instruction exception

31.2.4 xl.lh

Format:
31-28 27 - 20 19-15 14-12 11-7 6-0 Type
0010 imm[8:1] | rs1(!=rd) 001 rd 1111011 cust3
Syntax:

x1.1h rd, imm(rsl)

Description:

This instruction implements loading 2-bytes of signed data from the storage space at the specified address.At the same
time, the base is updated to (rs1+imm).The destination address is specified by rs1.

Operations:

rd = Sext(Meml6(rsl));

rsl +=imm[8:0];

Exceptions:

Unaligned exception, illegal instruction exception
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31.2.5 xl.lhu

Format:
31-28 27 - 20 19-15 14-12 11-7 6-0 Type
0011 imm[8:1] | rs1(!=rd) 001 rd 1111011 cust3
Syntax:

xl.lhu rd ,imm(rsl)

Description:

This instruction implements loading 2-bytes of unsigned data from the storage space at the specified address.At the same
time, the base is updated to (rs1+imm).The destination address is specified by rs1.

Operations:

rd = Zext(Mem8(rsl));

rsl +=imm[8:0];

Exceptions:

Unaligned exception, illegal instruction exception

31.2.6 xl.lw

Format:
31-28 27 - 20 19-15 14-12 11-7 6-0 Type
0100 imm[9:2] | rs1(!=rd) 001 rd 1111011 cust3
Syntax:

x1.1lw rd,imm(rsl)

Description:

This instruction implements loading 4-bytes of signed data from the storage space at the specified addre.At the same time,
the base is updated to (rs1+imm).The destination address is specified by rs1.

Operations:

rd = Sext(Mem32(rsl));

rsl +=imm[9:0];

Exceptions:

Unaligned exception, illegal instruction exception
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31.2.7 xl.sb

Format:
31-28 27 - 25 24 - 20 19-15 14-12 11-7 6-0 Type
0101 imm[7:5] | rs2 rsl 001 imm[4:0] 1111011 cust3
Syntax:

xl.sb rs2,imm(rsl)

Description:

This instruction stores single-byte data in rs2 to a specified address space. At the same time,the base is updated to
(rs1+imm).

Operations:

Mem8(rsl)= rs2;

rsl +=imm[7:0];

Exceptions:

Unaligned exception, illegal instruction exception

31.2.8 xl.sh

Format:
31-28 27 - 25 24 - 20 19-15 14-12 11-7 6-0 Type
0110 imm][8:6] rs2 rsl 001 imm[5:1] 1111011 cust3
Syntax:

x1l.sh rs2,imm(rs1)

Description:

This instruction stores 2-byte data in rs2 to a specified address space. At the same time,the base is updated to (rs1+imm)
and save to rs1.

Operations:

Meml6(rsl)= rs2;

rsl +=imm[8:0];

Exceptions:

Unaligned exception, illegal instruction exception

s
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31.2.9 xl.sw

Format:
31-28 27 - 25 24 - 20 19-15 14-12 11-7 6-0 Type
0111 imm[9:7] | rs2 rsl 001 imm[6:2] 1111011 cust3
Syntax:

xl.sw rs2,imm(rsl)

Description:

The instruction stores 4-bytes of data in rs2 into the storage space at the specified address.At the same time,the base is
updated to (rs1+imm) and save to rs1.

Operations:

Mem32(rsl)= rs2;

rsl +=imm[9:0];

Exceptions:

Unaligned exception, illegal instruction exception

31.2.10 xl.lwu(rv64)

Format:
31-28 27 - 20 19-15 14-12 11-7 6-0 Type
1000 imm[9:2] | rs1(!=rd) 001 rd 1111011 cust3
Syntax:

x1l.1lwu rd,imm(rs1)

Description:

This instruction implements loading 4-bytes of unsigned data from the storage space at the specified addre.At the same
time ,the base is updated to (rs1+imm) and saved to rs1.

Operations:

rd = Zext(Mem32(rsl));

rsl +=imm[9:0];

Exceptions:

Unaligned exception, illegal instruction exception
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31.2.11 xl.ld(rv64)

Format:
31-28 27 - 20 19-15 14 -12 11-7 6-0 Type
1001 imm[10:3] | rs1(!=rd) | 001 rd 1111011 cust3
Syntax:

x1.1d rd,imm(rsl)

Description:

The instruction implements loading 8-bytes of signed data from the storage space at the specified address.At the same,
time the base is updated to (rs1+imm) and saved to rs1.

Operations:

rd = Sext(Mem64(rsl));

rsl +=imm[10:0];

Exceptions:

Unaligned exception, illegal instruction exception

31.2.12 xl.sd(rv64)

Format:
31-28 27 - 25 24 - 20 19-15 14-12 11-7 6-0 Type
1010 imm[10:8] | rs2 rsl 001 imm][7:3] 1111011 cust3
Syntax:

xl.sd rs2,imm(rs1)

Description:

The instruction stores 8-bytes of data in rs2 into the storage space at the specified address. At the same time,The base is
updated to (rs1+imm) and save to rs1.

Operations:

Mem64(rsl)= rs2;

rsl +=imm[10:0];

Exceptions:

Unaligned exception, illegal instruction exception
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31.2.13 xl.ilgp.b

Format:
31-30 29-14 13-12 11-7 6-0 Type
00 imm[15:0] 00 rd 1011011 cust2
Syntax:

x1.1lgp.b rd,imm

Description:

The instruction implements loading 1-byte of signed data from the storage space at the specified address.The destination
address is determined by GP+imm[15:0].

Operations:

rd = Sext(Mem8(gp+imm));

Exceptions:

illegal instruction exception

31.2.14 xl.lgp.bu

Format:
31-30 29 -14 13-12 11-7 6-0 Type
01 imm[15:0] 00 rd 1011011 cust2
Syntax:

x1.1gp.bu rd,imm

Description:

The instruction implements loading 1-byte of unsigned data from the storage space at the specified address.The destination
address is determined by GP+imm([15:0].

Operations:

rd = Zext(Mem8(gp+imm));

Exceptions:

illegal instruction exception

31.2.15 xl.lgp.h

Format:
31-30 29 - 15 14 -12 11-7 6-0 Type
00 imm[15:1] 001 rd 1011011 cust2
Syntax:

x1.1gp.h rd,imm

Description:

The instruction implements loading 2-byte of signed data from the storage space at the specified address.The destination
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address is determined by GP+imm<<I1.

Operations:

rd = Sext(Meml6(gp+imm<<1));

Exceptions:

illegal instruction exceptio

31.2.16 xLIgp.hu

Format:
31-30 29 - 15 14 -12 11-7 6-0 Type
00 imm[15:1] 101 rd 1011011 cust2
Syntax:

x1l.1gp.hu rd,imm

Description:

The instruction implements loading 2-byte of unsigned data from the storage space at the specified address.The destination

address is determined by GP+imm<<I1.

Operations:

rd = Zext(Meml6(gp+imm<<1));

Exceptions:

illegal instruction exception

31.2.17 xl.lgp.w

Format:
31-30 29 -15 14 -12 11-7 6-0 Type
00 imm[16:2] 010 rd 1011011 cust2
Syntax:

x1.1lgp.w rd,imm

Description:

The instruction implements loading dobule 4-byte of signed data from the storage space at the specified address.The

destination address is determined by GP+imm<<2.

Operations:

rd = Sext(Mem32(gp+imm<<2));

Exceptions:

illegal instruction exception
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31.2.18 xl.lgp.wu(rv64)

Format:
31-30 29 -15 14 -12 11-7 6-0 Type
00 imm[16:2] 110 rd 1011011 cust2
Syntax:

x1.1lgp.wu rd,imm

Description:

The instruction implements loading 4-byte of unsigned data from the storage space at the specified address.The destination
address is determined by GP+imm<<2.

Operations:

rd = Zext(Mem32(gp+imm<<2));

Exceptions:

illegal instruction exception

31.2.19 xl.Ilgp.d(rv64)

Format:
31-30 29 - 15 14 -12 11-7 6-0 Type
00 imm[17:3] 011 rd 1011011 cust2
Syntax:

x1.1gp.d rd,imm

Description:

The instruction implements loading 8-byte of signed data from the storage space at the specified address.The destination
address is determined by GP+imm[16:3]<<3.

Operations:

rd = Mem64 (gp+imm<<3);

Exceptions:

illegal instruction exception

31.2.20 xl.sgp.b

Format:
31-30 29 - 25 24 - 20 19-14 13-12 11-7 6-0 Type
11 imm[15:11] rs2 imm[10:5] 00 imm([4:0] | 1011011 | cust2
Syntax:

x1l.sgp.b rs2,imm

Description:

Saves the lowest byte in rs2 to the storage space at the specified address.The destination address is determined by GP+imm.
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Operations:

Mem8 (gp+imm) = rs2;

Exceptions:

illegal instruction exception

31.2.21 xl.sgp.h

Format:
31-30 29 - 25 24 - 20 19-14 13-12 11-7 6-0 Type
10 imm[15:11] rs2 imm[10:6] 001 imm([5:1] | 1011011 | cust2
Syntax:

x1l.sgp.h rs2,imm

Description:

Saves the lowest 2-byte in rs2 to the storage space at the specified address.The destination address is determined by
GP+imm<<I.

Operations:

Meml6 (gp+imm<<1l) = rs2;

Exceptions:

illegal instruction exception

31.2.22 xl.sgp.w

Format:
31-30 29 - 25 24 - 20 19-15 14 -12 11-7 6-0 Type
10 imm[16:12] rs2 imm[11:7] 010 imm[6:2] | 1011011 | cust2
Syntax:

xl.sgp.w rs2,imm

Description:

Saves the lowest byte in rs2 to the storage space at the specified address.The destination address is determined by
GP+imm<<2.

Operations:

Mem32 (gp+imm<<2) = rs2;

Exceptions:

illegal instruction exception
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31.2.23 xl.sgp.d(rv64)

Format:
31-30 29-25 24 -20 19-15 14-12 11-7 6-0 Type
10 imm[17:13] rs2 imm[12:8]] 011 imm[7:3] | 1011011 cust2
Syntax:

x1l.sgp.d rs2,imm

Description:

Saves the lowest 8-byte in rs2 to the storage space at the specified address.The destination address is determined by
GP+imm<<3.

Operations:

Mem64 (gp+imm<<3) = rs2;

Exceptions:

illegal instruction exception

31.2.24 xl.addrchk

Format:
31 30-25 24 - 20 19-15 14 -12 11-7 6-0 Type
0 imm[10:5] | rs2 rsl 011 imm[4:1]|11] 1111011 cust3
Syntax:

xl.addrchk rsl,rs2 imm

Description:

Check that the values of rs1 and rs2 are aligned.For rv32, this is to check whether the lower 2-bit is 0.For rv64, it checks
whether the lower 3-bits are 0.If either of rs1 or rs2 does not meet the alignment conditions, it jumps to the specified
address.This command is used to check string entry addresses.

Operations:

for rv32 MASK=0x3
for rve4 MASK=0x7

cond = (rsl|rs2)&MASK;
if cond == 1 then branch to PC+imm<<1
else branch to PC+4

Exceptions:
illegal instruction exception

Intrinsic

TODO
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31.2.25 xl.bezm

Format:
31 30-25 24 -20 19-15 14-12 11-7 6-0 Type
1 imm[10:5] | rs2 rsl 011 imm[4:1]11] 1111011 cust3
Syntax:

xl.bezm rsl,rs2 imm

Description:

Check that rs1 contains O-bytes and that the values of rs1 and rs2 are equal.If rs1 contains 8’h00, or rsl1 is not equal to rs2,
skip to the specified address.Also save the difference to a fixed register (tentative x31).(This instruction is used to check
the equality of 4-byte or 8-byte strings)

Operations:

rsx_msk = rsx&Vx7F7F7F7F; //rv32, rsx=[rsl,rs2]
rsx_msk = rsx&Ox7F7F7F7F7F7F7F7F; //rv64, rsx=[rsl,rs2]

cond = (rsl_msk_b[x] == 8'h00) | (rsl_msk != rs2_msk)
if cond == 1 then branch to PC+imm<<1
else branch to PC+4

x31_byte® = (rsl_msk_byte® - rs2_msk_byte0);
x31_bytel = (rsl_msk_bytel - rs2_msk_bytel);
x31_byte2 = (rsl_msk_byte2 - rs2_msk_byte2);

x31_byte3 = (rsl_msk_byte3 - rs2_msk_byte3);
for rv6e4, also need:

x31_byted4 = (rsl_msk_byted - rs2_msk_byted);
x31_byte5 = (rsl_msk_byte5 - rs2_msk_byte5);

x31_byte6 = (rsl_msk_byte6 - rs2_msk_byte6);
x31_byte7 = (rsl_msk_byte7 - rs2_msk_byte7);
Exceptions:

illegal instruction exception

Intrinsic

TODO

31.2.26 xl.nzmsk

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0 Type
1110000 00000 rsl 001 rd 1111011 cust3
Syntax:

xl.nzmsk rd,rsl

Description:

The position of the first 0 byte of rs1 is checked from the low byte and the corresponding mask value is generated accord-
ingly. If not, write back to full FF. Assuming that the first O byte of rsl is in the X byte position, 0 to X bytes are written
to full FF, and the remaining bytes are written to 0. This instruction is used to determine the end of a string and generate
the corresponding mask value accordingly.
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Operations:

rd[0]

= 8'hff;
rd_b[x] = (

rsl_b[x-1] == 8'h00? 8'h00 : 8'hff) & rd_b[x-1]; x>=1

rs1=0x12345678,then rd=0xffffffff;
rs1=0x12345600, then rd=0x000000ff;
rs1=0x12340078,then rd=0x0000ffff;
rs1=0x12340000, then rd=0x000000ff;
rs1=0x12005678,then rd=0x00ffffff;

Exceptions:
illegal instruction exception

Intrinsic

unsigned int __x1_nzmsk_ (unsinged int a); //rv32
unsigned long long __x1_nzmsk_ (unsinged long long a); //rvé64

31.2.27 xl.finz

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0 Type
1110001 00000 rsl 001 rd 1111011 cust3
Syntax:

x1l.ffnz rd,rsl

Description:

Check the result in bytes starting from the lower byte of rs1. Returns the value of the first non-zero byte.This instruction

is used to return the result of a string comparison, the difference.

Operations:

if (rs1_b[0] != 8'h00)

rd = rs1_b[0]
else if (rsl_b[1l] != 8'h00)
rd = rsl_b[1]

else if (rsl_b[2] !'= 8'h00O)
rd = rsl_b[2]
else if (rsl_b[3] != 8'h00O)
rd = rsl1_b[3]

“ifdef RV64
else if (rsl_b[4] !'= 8'h00)
rd = rsl_b[4]
else if (rsl_b[5] !'= 8'h00)
rd = rsl1_b[5]

else if (rsl_b[6] != 8'h00O)
rd = rsl1_b[6]

else if (rsl1_b[7] '= 8'h00)
rd = rsl1_b[7]

‘endif

else

rd = 8'h00;
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Exceptions:
illegal instruction exception

Intrinsic

unsigned char __x1_ffnz_ (unsinged int a); //rv32
unsigned char __x1_ffnz_ (unsinged long long a); //rvé64

31.2.28 xl.beqi

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0 Type
offset[12]|10:5] imm[4:0] | rsl 010 off- 1111011 cust3
set[4:1]11]
Syntax:

x1l.beq rsl,cimm,ofst

Description:
Compare rs1 and cimm immediate numbers. If they are equal, jump to PC+ofset for execution.

Operations:

if (rsl == sext(cimm)) PC=PC+ofst
else PC=PC+4

Exceptions:

illegal instruction exception

31.2.29 xl.bnei

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0 Type
offset[12]10:5] imm[4:0] | rsl 100 off- 1111011 cust3
set[4:1]11]
Syntax:

x1l.bnei rsl,cimm,ofst

Description:
Compare rs1 and cimm immediate numbers. If they are not equal, jump to PC+ofset for execution.

Operations:

if (rsl != sext(cimm)) PC=PC+ofst
else PC=PC+4

Exceptions:

illegal instruction exception
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31.2.30 xIl.muli

Format:
31-29 28 -25 24 - 20 19-15 14 -12 11-7 6-0 Type
110 imm([8:5] imm[4:0] rsl 001 rd 1111011 | cust3
Syntax:
xl.muli rd, rsl, imm
Description:
Multiply rs1 with imm after symbol bit extension,and save to rd.
Operations:
rd = rsl*sext(imm)
Exceptions:
illegal instruction exception
31.2.31 xl.addibne
Format:
31 30 -29 28 - 20 19-15 14 -12 11-7 6-0 Type
1 scale[1:0] uimm([9:1] rsl 111 rd 1111011 | cust3
Syntax:

xl.addibne rd, rsl, scale, uimm

Description:

Compare rd with rs1+scale, jump to pc-uimm if they are not equal, and save the results of rd+scale to rd.

Operations:

if rsl != rd then branch to PC-uimm
else branch to PC+4/2

ofst= (scale[1:0] == 2'b®0) ? 1 :
(scale[1:0] == 2'b01) ? 2 :
(scale[1:0] == 2'b10) ? 4 : 8;

rd=rd+ofst.

Exceptions:

illegal instruction exception
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31.2.32 xl.slet

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0 Type
1110011 rs2 rsl 001 rd 1111011 cust3
Syntax:

xl.slet rd,rsl,rs2

Description:
If rs1 is less than or equal to rs2, return 1, otherwise return 0, signed comparison.

Operations:

rd = (rsl <=rs2) ? 1 : 0;

Exceptions:
illegal instruction exception

Intrinsic

unsigned int __x1_slet_ (singed int a, signed int b); //rv32
unsigned long long __x1_slet_ (singed long long a, signed long long b); //rv64

31.2.33 xl.sletu

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0 Type
1110100 rs2 rsl 011 rd 1111011 cust3
Syntax:

xl.sletu rd,rsl,rs2

Description:
If rs1 is less than or equal to rs2, return 1, otherwise return 0, signed comparison.

Operations:

rd = (rsl <=rs2) ? 1 : 0;

Exceptions:
illegal instruction exception

Intrinsic

unsigned int __x1_sletu_ (unsinged int a, unsigned int b); //rv32
unsigned long long __x1_sletu_ (unsinged long long a, unsigned long long b); //rv64

31.2. Nuclei Additional Xlcz Instruction for Codesize 321



Nuclei® RISC-V Instruction Set Architecture Specification

31.2.34 xl.extract

Format:
31-30 29 -25 24 -20 19-15 14-12 11-7 6-0 Type
00 uimm3[4:0] uimm?2[4:0] rsl 101 rd 1111011 | cust3
Syntax:

xl.extract rd, rsl, uimm3, uimm2

Description:
Intercept the data between [uimm3 + uimm?2-1:uimm?2] from rs1, then do signed bit extension, and save it to rd.

Operations:

t=min(uimm3+uimm2-1, 31); //top
b= uimm2;//bottom
rd = Sext(rsl[t:b])

Exceptions:
illegal instruction exception

Intrinsic

signed int __x1_extract_ (unsinged int a, unsigned char imml, wunsigned char imm2); //rv32
signed long long __xl1_extract_ (unsinged long long a, unsigned char imml, unsigned char.
—imm2); //rv64

31.2.35 xl.extractr

Format:
31-30 29 -25 24 - 20 19-15 14-12 11-7 6-0 Type
01 00000 rs2 rsl 101 rd 1111011 cust3
Syntax:

xl.extractr rd, rsl, rs2

Description:
Intercept the data between[rs2[9:5]+rs2[4:0]-1 : rs2[4:0]] from rs1, then do signed bit extension, and save it to rd.

Operations:

t = min(rs2[9:5]+rs2[4:0]-1, 31);
b rs2[4:0];
rd = Sext(rsl[t:b])

Exceptions:
illegal instruction exception

Intrinsic

signed int __x1_extractr_ (unsinged int a, unsigned short b); //rv32
signed long long __x1_extractr_ (unsinged long long a, wunsigned short b); //rvé64
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31.2.36 xl.extractu

Format:
31-30 29 -25 24 - 20 19-15 14-12 11-7 6-0 Type
10 uimm3[4:0] uimm?2([4:0] rsl 101 rd 1111011 | cust3
Syntax:

xl.extractu rd, rsl, uimm3, uimm2

Description:
Intercept the data between[uimm3 + uimm?2-1:uimm?2] from rs1, then do the unsigned bit extension, and save it to rd.

Operations:

t=min(uimm3+uimm2-1, 31);
b= uimm2;
rd = Zext(rsl[t:b])

Exceptions:
illegal instruction exception

Intrinsic

unsigned int __x1_extractu_ (unsinged int a, unsigned char imml, unsigned char imm2); //
—rv32

unsigned long long __x1_extractu_ (unsinged long long a, unsigned char imml, unsigned.
—char imm2); //rvé4

31.2.37 xl.extractur

Format:
31-30 29-25 | 24-20 19-15 14 -12 11-7 6-0 Type
11 00000 rs2 rsl 101 rd 1111011 | cust3
Syntax:

xl.extractur rd, rsl, rs2

Description:
Intercept the data between[rs2[9:5] + rs2[4:0]-1 : rs2[4:0]] from rs1, then do the unsigned bit extension, and save it to rd.

Operations:

Exceptions:
illegal instruction exception

Intrinsic

unsigned int __x1_extractur_ (unsinged int a, unsigned short b); //rv32
unsigned long long __x1_extractur_ (unsinged long long a, unsigned short b); //rvé4
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31.2.38 xl.insert

Format:
31-30 29 -25 24 - 20 19-15 14-12 11-7 6-0 Type
00 uimm3[4:0] uimm?2([4:0] rsl 110 rd 1111011 | cust3
Syntax:

xl.insert rd, rsl, uimm3, uimm2

Description:
Change the data in the [uimm3+uimm2:uimm?2] field of rd to rs 1[1s3:0]. The data of other bit fields in rd remains unchanged.

Operations:

td=min(uimm3+uimm2, 31);
bd=uimm2;

ts=uimm3- (max (uimm3+uimm2,32)-32)
rd[td: bd] = rsi[ts:0])

Exceptions:

illegal instruction exception

Intrinsic
signed int __x1_insert_ (unsinged int a, unsigned char imml, unsigned char imm2); //rv32
signed long long __xl1_insert_ (unsinged long long a, unsigned char imml, wunsigned char.

—imm2); //rvé4

31.2.39 xl.bset

Format:
31-30 29 -25 24 - 20 19-15 14-12 11-7 6-0 Type
10 uimm3[4:0] uimm?2[4:0] rsl 110 rd 1111011 | cust3
Syntax:

xl.bset rd, rsl, uimm3, uimm?2

Description:

The data in the [uimm3+uimm?2:uimm?2] bit field in rs1 is modified to complete 1, and the rest is kept unchanged and saved
to rd.

Operations:

mask = ((1 << (uimm3+1)) - 1) << uimm2;//uimm3+uimm2 <= 31 or 63;
rd = rsl | mask;

Exceptions:
illegal instruction exception

Intrinsic

signed int __x1_bset_ (unsinged int a, unsigned char imml, unsigned char imm2); //rv32
signed long long __x1_bset_ (unsinged long long a, unsigned char imml, wunsigned char.
—imm2); //rvé4
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31.2.40 xl.bsetr

Format:
31-30 29-25 | 24-20 | 19-15 | 14-12 11-7 6-0 Type
11 00000 rs2 rsl 110 rd 1111011 | cust3
Syntax:

xl.bsetr rd, rsl, rs2

Description:

The data in the [rs2[9:5] + rs2[4:0] : rs2[4:0] bit field in rs1 is modified to complete 1, and the rest is kept unchanged and
saved to rd.

Operations:

mask = ((1 << (rs2[9:5]+1)) -1) << rs2[4:0];//rs2[9:5]+rs2[4:0] <= 31 or 63;
rd = rsl | mask;

Exceptions:
illegal instruction exception

Intrinsic

signed int __x1_bsetr_ (unsinged int a, unsigned short b); //rv32
signed long long __x1_bsetr_ (unsinged long long a, unsigned short b); //rv64

31.2.41 xl.bclr

Format:
31-30 29 - 25 24 - 20 19-15 14 -12 11-7 6-0 Type
00 uimm3[4:0] uimm?2[4:0] rsl 111 rd 1111011 | cust3
Syntax:

x1l.bclr rd, rsl, uimm3, uimm2

Description:

The data in the [uimm3+uimm?2:uimm?2] bit field in rs1 is modified to complete 0, and the rest is kept unchanged and saved
to rd.

Operations:

mask = ~(((1 << (uinm3+1))-1) << uimm2); //uimm3+uimm2 <= 31 or 63;
rd = rsl & mask;

Exceptions:
illegal instruction exception

Intrinsic

signed int __x1_clr_ (unsinged int a, unsigned char imml, unsigned char imm2); //rv32
signed long long __xl1_clr_ (unsinged long long a, unsigned char imml, wunsigned char..
—imm2); //rvé4
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31.2.42 xl.bclrr

Format:
31-30 29 - 25 24 - 20 19-15 14-12 11-7 6-0 Type
01 00000 rs2 rsl 111 rd 1111011 | cust3
Syntax:

xl.bsetr rd, rsl, rs2

Description:

The data in the [rs2[9:5] + rs2[4:0] : rs2[4:0] bit field in rs1 is modified to complete 0, and the rest is kept unchanged and
saved to rd.

Operations:

mask = ~(((1 << (rs2[9:5]+1))-1) << rs2[4:0]); //rs2[9:5]+rs2[4:0] <= 31 or 63;
rd = rsl & mask;

Exceptions:
illegal instruction exception

Intrinsic

signed int __x1_bclrr_ (unsinged int a, unsigned short b); //rv32
signed long long __x1_ bclrr_ (unsinged long long a, unsigned short b); //rv64

31.2.43 xl.clb

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0 Type
1110101 00000 rsl 001 rd 1111011 cust3
Syntax:

xl.clb rd, rsi

Description:
Count the leading bit (0 or 1) in rs1, that is, the number of consecutive bits since MSB.If rs1 is 0, 0 is returned.

Operations:

uint8 __clb__ (uint rsl)
{
uint8 header = rsl1&0x30000000;
uint tmp=rsi;
uint8 cnt=0;
if (rsl == 0) return 0;
for (uint8 i=0;i<32; i++)

{
if ((tmp&0x80000000) && (header)) cnt++;
else if (~(tmp&Ox80000000) && ~(header)) cnt ++;
else break;
tmp = tmp<<l;
}

(continues on next page)
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return cnt;

}

Exceptions:

illegal instruction exception

31.2.44 xI.fl1

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0 Type
1110110 00000 rsl 001 rd 1111011 cust3
Syntax:

x1.£f11 rd, rsil

Description:
Starting with MSB, find out where the last bitl in rs1 is located.If rs1 is 0, then rd is equal to 32 or 64.

Operations:

uint8 __£f11__ (uint rsl)
{
cnt=0;

while(! (rs1&0x1)) {rsl=rsl>>1;cnt++;}
return cnt;

}

rs1=0x80001000, then rd=12

Exceptions:

illegal instruction exception

31.2.45 xl.ff1

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0 Type
1110111 00000 rsl 001 rd 1111011 cust3
Syntax:

x1.ff1 rd, rsi

Description:
Starting with MSB, find the location of the first bitl in rst1.If rs1 is O, then rd is equal to 32 or 64.

Operations:

uint8 __ffl__ (uint rsl)
{
XLEN=32;//for rv64, XLEN=64;

if (rsl1==0) return XLEN;

cnt=XLEN-1;

while(! (rs1&0x8000_0000)) {rsl=rsl<<l;cnt--;}

(continues on next page)
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return cnt;

}

rs1=0x80001000, then rd=31

Exceptions:

illegal instruction exception

31.2.46 xI.fl0

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0 Type
1111000 00000 rsl 001 rd 1111011 cust3
Syntax:

x1.£f10 rd, rsi

Description:
Starting with MSB, find the location of the last bit0 in rst1.If rs1 is O, then rd is equal to 32 or 64.

Operations:

uint8 __f10__ (uint rsl)
{
cnt=0;

while((rs1&0x1)) {rsl=rsl>>1;cnt++;}
return cnt;

}

rs1=0x80001000, then rd=0

Exceptions:

illegal instruction exception

31.2.47 xI.ff0

Format:
31-25 24 - 20 19-15 14 -12 11-7 6-0 Type
1111001 00000 rsl 001 rd 1111011 cust3
Syntax:

x1.ff0 rd, rsi

Description:
Starting with MSB, find out where the last bitl in rs1 is located.If rs1 is 0, then rd is equal to 32 or 64.

Operations:

uint8 __ff0®__ (uint rsl)
{
XLEN=32;//for rv64, XLEN=64;
if (rs1==0) return XLEN;

(continues on next page)
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cnt=XLEN-1;
while((rs1&0x8000_0000)) {rsl=rsl<<l;cnt--;}
return cnt;

}

rs1=0x80001000, then rd=30

Exceptions:

illegal instruction exception

31.2.48 xl.bitrev

Format:
31-27 26 - 25 24 - 20 19-15 14 -12 11-7 6-0 Type
10110 uimm3[1:0] uimm?2[4:0] rsl 001 rd 1111011 | cust3
Syntax:

x1l.bitrev rd, rsl, uimm3, uimm2

uimm3 == 0:Flip in groups of 1bit
uimm3 == 1:Flip in groups of 2bit
uimm3 == 2:Flip in groups of 3bit
uimm3 == 3:undefined

uimm2 Represents the number of bits shifted to the left of rsl before flipping
x1l.bitrev rd, rsl, 0, ® revert bits in group of 1bit, with no shift.
IN : 0x12345678 0001_0010 0011_0100 0101_0110 0111_1600

SHIFT: 0x12345678 0001_0010 0011_0100 0101_0110 0111_1000 //no shift
OUT : Oxle6a2c48 0001_1110 0110_1010 0010_1100 0100_1000

x1l.bitrev rd, rsl, 1, 2 revert bits in group of 2bits, after left shift 2.

in: 0x12345678 0001_0010 0011_0100 0101_0110 0111_1000
shift: 0x48d159e0 0100_1000 1101_0001 0101_16001 1110_0000 //left shift 2
out: 0x0b654721 0000_1011 0110_0101 0100_0111 0010_0001

x1l.bitrev rd, rsl, 2, 4 revert bits in group of 3bits, after left shift 4.
in: 0x12345678 0001_0010 0011_0100 0101_0110 0111_1000

shift: 0x23456780 0010_0011 0100_0101 0110_0111 1000_0000 //left shift 4
out: 0x08765432 0000_0100 1111_0010 1010_1001 1000_0001

Description:

Performs a bit flip operation on rs1 according to the specified pattern and group. uimm3 specifies the group information,
and uimm? specifies the number of left shifts before the reversal.

Operations:

uint __bitrev__ (uint rsl, uint8 grp_bits, uint8 lsft_bit);

Exceptions:
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illegal instruction exception

31.2.49 xl.flh

Format:
31-25 24 - 20 19-15 14-12 11-7 6-0
0101 imm[8:1] | rsl 101 rd(freg) 1111011
Syntax:

x1.flh rd, imm(rsl)

Description:

The instruction reads 2 bytes of data from the memory address specified by rs1, saves it to the floating-point register frd,

and updates the base to (rs1+imm) and saves it to rs1. Semi-precision efficiency.

Operations:

frd = Meml16(rsl)
rsl += imm

Exceptions:

Unaligned exception, illegal instruction exception

31.2.50 xl.flw

Format:

31-28 27 - 20 19-15 14-12 11-7 6-0
0110 imm[9:2] | rsl 101 rd(reg) 1111011
Syntax:

x1.flw rd,imm(rsl)

Description:

The instruction reads 4 bytes of data from the memory address specified by rs1, saves it to the floating-point register frd,

and updates the base to (rs1+imm) and saves it to rs1. Single precision efficiency.

Operations:

frd = Mem32(rsl)

rsl +=imm

Exceptions:

Unaligned exception, illegal instruction exception
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31.2.51 xl.fld

Format:
31-28 27 - 20 19-15 14-12 11-7 6-0 Type
0111 imm[10:3] | rs1) 101 rd(freg) 1111011 cust3
Syntax:

x1.fld rd,imm(rs1)

Description:

The instruction reads 8 bytes of data from the memory address specified by rs1, saves it to the floating-point register frd,
and updates the base to (rs1+imm) and saves it to rs1. Double precision efficiency.

Operations:

frd =Mem64(rsl)

rsl +=imm

Exceptions:

Unaligned exception, illegal instruction exception

31.2.52 xl.fsh

Format:
31-28 27 - 25 24 - 20 19-15 14-12 11-7 6-0 Type
1101 imm][8:6] rs2(freg) rsl 101 imm[5:1] 1111011 cust3
Syntax:

xl.fsh rs2,imm(rsl)

Description:

The instruction stores 2 bytes of data in rs2 into the storage space at the specified address, while the base is updated to
(rs1+imm) and saved to rs1.

Operations:

Meml6(rsl)= rs2

rsl +=imm

Exceptions:

Unaligned exception, illegal instruction exception
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31.2.53 xl.fsw

Format:
31-28 27 - 25 24 - 20 19-15 14-12 11-7 6-0 Type
1110 imm([9:7] | rs2(freg) rsl 101 imm[6:2] 1111011 cust3
Syntax:

x1.fsw rs2,imm(rsl)

Description:

The instruction stores 4 bytes of data in rs2 into the storage space at the specified address, while the base is updated to
(rs1+imm) and saved to rs1.

Operations:

Mem32(rsl)= rs2

rsl +=imm

Exceptions:

Unaligned exception, illegal instruction exception

31.2.54 xl.fsd

Format:
31-28 27 - 25 24 - 20 19-15 14-12 11-7 6-0 Type
1111 imm[10:8] | rs2(freg) rsl 101 imm][7:3] 1111011 cust3
Syntax:

xl.fsd rs2,imm(rsl)

Description:

The instruction stores 8 bytes of data in rs2 into the storage space at the specified address, while the base is updated to
(rs1+imm) and saved to rs1.

Operations:

Mem64 (rsl)= rs2

rsl +=imm

Exceptions:

Unaligned exception, illegal instruction exception
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32

SMP and Cluster Cache

32.1 SMP and Cluster Cache Overview

Nuclei processor core can optionally support Cluster Cache (CC) and Symmetric Multi-Processor (SMP), in a Nuclei MP
core design (like UX900 MP core), it default integrates the Cluster Cache (CC) and SMP related module called Snoop
Control Unit (SCU). Following figure shows a Nuclei MP Cluster diagram:

Cluser Debug Module Cluser Interrupt Module
JTAG/cJJTAG Timer, ECLIC/PLIC/CIDU
Core(0) VPU VPU Core(n-1)
‘ MMU ‘ ‘ DSP ‘ ‘ DSP ‘ ‘ MMU ‘
ooe
‘ 1/D L1 Cache ‘ FPU ‘ ‘ FPU ‘ ‘ I/D L1 Cache
AX14 [ 1 AXI4
> I/DLM ‘ ‘ PMP ‘ ‘ PMP ‘ ‘ I/DLM
Slave Port ‘ | Slave Port

AXI4
10CP <
Snoop
Filter ,—‘ AXI4
I0CP €

AXI4
B CLM Slave Port

Cluster Bus Interface Unit

AXI14 AHB-Lite
A

Cluster Memory Port Cluster Peripheral Port

Fig. 32.1: Multi-Core Cluster Diagram

In the Multi-Core cluster design, all cores are symmetric and each core gets its private L1 instruction and data cache,
I/D-LM and PMP/MMU/FPU/DSP/VPU module.

All cores share the same Debug Module, Interrupt Module, Cluster Bus Interface Unit and Cluster Cache, Cluster Cache
is used to provide fast access to copies of external memory (usually DDR in the SOC) for masters in the cluster.

The 1/0 Coherency Port (IOCP) is slave port for the external masters which want to access the shareable and cacheable
data of cores. And the SCU acts as a broadcast with filtering coherency manager for all the cores in the cluster and all
external masters which hooks to IOCP.

The Cluster Cache can be configured to Cluster Local Memory (CLM) by user’s software, all cores share the CLM and
can access by the same address range and the same latency. The CLM Slave Port is slave port for external masters which
want to access the CLM.

333



Nuclei® RISC-V Instruction Set Architecture Specification

This chapter describes details of CC, SMP, SCU and related software visible registers, it also involves some basic Cache
Control and Maintenance (CCM) operations.

32.2 Client Description

SCU support CORE and IOCP data coherency.
For simplicity, SCU refers to the components upstream that need to support data consistency as ‘client’.
So:
* One CORE is a client.
e ANl TOCP is a client.
For example, there are four cores and two IOCP in cluster. So the client number is 5.
¢ Client0: COREO
e Clientl: COREI
¢ Client2: CORE2
Client3: CORE3
Client4: IOCPO and IOCP1

L]

32.3 SMP and Cluster Cache Registers and Description
32.3.1 SMP and Cluster Cache Registers

Table 32.1: SMP and Cluster Cache Registers list

Offset RW Name Description

0x0 MR SMP_VER Machine Mode SMP Version Register

0x4 MR SMP_CFG Machine Mode SMP Configuration Register
0x8 MR CC_CFG Machine Mode CC Config Register

0xC MRW SMP_ENB Machine Mode SMP Enable Register

0x10 MRW CC_CTRL Machine Mode CC Control Register

0x14 MRW CC_mCMD Machine Mode CC Command and Status
0x18 MRW CC_ERR_INJ CC ECC Error Injection Control Register
0x1C MRW CC_RECV_CNT CC ECC Recoverable Error Count

0x20 MRW CC_FATAL_CNT CC ECC Fatal Error Count

0x24 MRW CC_RECV_THV CC ECC Recoverable Error Threshold Value
0x28 MRW CC_FATAL_THV CC ECC Fatal Error Threshold Value

0x2C MRW CC_BUS_ERR_ADDR CC Maintain Operate Bus Error Physical Address, it

occupies 8 Bytes.

CC_CTRL register can decide it can be accessed or
not in S Mode.

0x40 MRW CLIENTO_ERR_STATUS ClientO of CC Error Status.

CC_CTRL register can decide it can be accessed or
not in S Mode.

0xBC MRW CLINT31_ERR_STATUS Client31 of CC Error Status.

CC_CTRL register can decide it can be accessed or
not in S Mode.

0xCO SRW CC_sCMD Supervisor Mode CC Command and Status.
CC_CTRL register can decide it can be accessed or
not in S Mode.

continues on next page
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Table 32.1 — continued from previous page

Offset RW Name Description

0xC4 URW CC_uCMD User Mode CC Command and Status.
CC_CTRL register can decide it can be accessed or
not in S/U Mode.

0xC8 MR SNOOP_PENDING Indicate the Core is being snooped or not in the SCU

0xCC MR TRANS_PENDING Indicate the Core ‘s transaction finish or not in the
SCU

0xDO MRW CLM_ADDR_BASE Cluster Local Memory base address, this register oc-
cupies 8 Bytes

0xD8 MRW CLM_WAY_EN Cluster Cache way enable register for Cluster Local
Memory

0xDC MRW CC_INVALID_ALL Cluster Cache invalid all register.
CC_CTRL register can decide it can be accessed or
not in S Mode.

0xEO MRW STM_CTRL Stream read/write control reigster.

OxE4 MRW STM_CFG Stream read/write configuration reigster.

0xE8 MRW STM_TIMEOUT Stream read/write timeout reigster.

0xEC MRW DFF_PROT Hardware Register protect Enable register.

0xFO MRW ECC_ERR_MSK Mask L2M ECC Error to ecc_cc_error_masked or
safety_error output.

0x100 MRW NS_RGO Non-Sharable Memory Region 0, this register occu-
pies 8 Bytes

0x178 MRW NS_RGI5 Non-Sharable Memory Region 15, this register occu-
pies 8 Bytes

0x180 MRW SMP_PMON_SELO Performance Monitor Event Selector 0.
CC_CTRL register can decide it can be accessed or
not in S Mode.

0x1BC MRW SMP_PMON_SEL15 Performance Monitor Event Selector 15.
CC_CTRL register can decide it can be accessed or
not in S/U Mode.

0x1CO MRW SMP_PMON_CNTO Performance Monitor Event Counter 0, this register
occupies 8 Bytes.
CC_CTRL register can decide it can be accessed or
not in S/U Mode.

0x23C MRW SMP_PMON_CNT15 Performance Monitor Event Counter 15, this register
occupies 8 Bytes.
CC_CTRL register can decide it can be accessed or
not in S/U Mode.

0x280 MRW CLIENTO_ERR_ADDR The register of address of client) which causes error,
this register occupies 8 Bytes.
CC_CTRL register can decide it can be accessed or
not in S Mode.

0x378 MRW CLIENT31_ERR_ADDR The register of address of client31 which causes error,
this register occupies 8 Bytes.
CC_CTRL register can decide it can be accessed or
not in S Mode.

0x380 MRW CLIENTO_WAY_MASK Cluster Cache way mask control register for clientO.

0x384 MRW CLIENT1_WAY_MASK Cluster Cache way mask control register for clientl.

0x3FC MRW CLIENT31_WAY_MASK Cluster Cache way mask control register for client31

0x900 MRW IOCP_PPI_REGION_EN IOCP PPI region Enable register.

0x904 MRW IOCP_CPPI_REGION_EN IOCP CPPI region Enable register.

0x908 MRW IOCP_DEV_REGION_L_BASE IOCP Device region low base address register.

0x90C MRW IOCP_DEV_REGION_L_MASK IOCP Device region low address mask register.

continues on next page
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Table 32.1 — continued from previous page

Offset RW Name Description

0x910 MRW IOCP_DEV_REGION_H_BASE IOCP Device region high base address register.

0x914 MRW IOCP_DEV_REGION_H_MASK IOCP Device region high address mask register.

0xA04 MRW IOCP_NOC_REGIONO_L_BASE IOCP Non-Cacheable region0 low base address reg-
ister.

0xA08 MRW IOCP_DEV_REGIONO_L_MASK IOCP Non-Cacheable region( low address mask reg-
ister.

0xAO0C MRW IOCP_NOC_REGION1_L_BASE IOCP Non-Cacheable region0 low base address reg-
ister.

0xA10 MRW IOCP_NOC_REGION1 L. MASK IOCP Non-Cacheable region( low address mask reg-
ister.

0xB04 MRW IOCP_NOC_REGIONO_H_BASE IOCP Non-Cacheable region0 high base address reg-
ister.

0xB08 MRW IOCP_NOC_REGIONO_H_MASK IOCP Non-Cacheable region0 high address mask reg-
ister.

0xBOC | MRW IOCP_NOC_REGIONO_H_BASE IOCP Non-Cacheable regionl high base address reg-
ister.

0xB10 MRW IOCP_NOC_REGIONO_H_MASK IOCP Non-Cacheable regionl high address mask reg-
ister.

0xCO00 MRW IOCP_DEV_MACRO_REGION_EN IOCP device region entry enable register.

0xC04 MRW IOCP_NOC_MACRO_REGION_EN IOCP non-cacheable region entry enable register.

0xCO08 MRW IOCP_CACH_MACRO_REGION_EN | IOCP cacheable region entry enable register.

Note:

1. Snoop Control Unit and Cluster Cache module are connected with the Cores with internal bus and the accessing
privilege info can be used directly by hardware to control the accessing permission described in this chapter.

2. In this chapter, the client means the each core in the cluster and all IOCP masters. When there are m cores and n
IOCP masters. the core 0 is client 0 ,the core m is client (m-1), all IOCP masters share the client m.

32.3.2 SMP_VER

This register is used to show the microarchitecture implementation version of SMP related module.

Table 32.2: SMP_VER Register

Field Name Bits Reset Value Description
Mic_Ver 7:0 X Micro Version Number
Min_Ver 15:8 X Minor Version Number
Maj_Ver 23:16 X Major Version Number
Reserved 31:24 0 Reserved 0
31 24 23 16 15 8 7 0
Reserved Maj Ver Min_Ver Mic_Ver
R R R
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32.3.3 SMP_CFG

This register is used to show the hardware configuration of SMP related design.

Table 32.3: SMP_CFG Register

Field Name Bits Reset Value Description

CC_PRESENT 0 X Cluster Cache present or not. 0: not present; 1:
Present

SMP_CORE_NUM 6:1 X Indicate core number in the cluster, it is fixed
value (core_num -1) when the RTL is gener-
ated.

I0OCP_NUM 12:7 X The IO Coherency port number in the cluster,
it is fixed value when the RTL is generated.

PMON_NUM 18:13 X The performance monitor number, it is fixed
value when the RTL is generated.

Reserved 31:19 0 Reserved 0

31 19 18 13 12 7 6 10

Reserved PMON_NUM IOCP_NUM SMP_CORE_NUM |CC
R R R R

32.3.4 CC_CFG

This register is used to show the hardware configuration of Cluster Cache.

Table 32.4: CC_CFG Register

Field Name Bits Reset Value Description
CC_SET 3:0 X Cluster Cache Set Number = 2(CC_SET)
CC_WAY 7:4 X Cluster Cache Way Number = (CC_WAY + 1)
CC_LSIZE 10:8 X Cluster Cache Line Size = 2A(CC_LSIZE + 2)
CC_ECC 11 X Indicate the Cluster Cache supports ECC or not
CC_TCYCLE 14:12 X Indicate the L2 Tag sram access cycle - 1.

0: 1-cycle 1: 2-cycle
CC_DCYCLE 17:15 X Indicate the L2 Data sram access cycle - 1.

0: 1-cycle 1: 2-cycle
Reserved 31:18 0 Reserved 0
31 18 17 15 14 12 11 10 8 7 4 3 0

Reserved CC_DCYCLEC _TCYCLECQCC_LSIZE| CC_WAY CC_SET

R R R R R R

32.3.5 SMP_ENB

This register is used to control which cores or all IOCP in the cluster can be cache coherency with each other handled by
hardware, or software needs to maintain the cache coherency when the corresponding bits not enabled. 1 means enable
while O means disable. The number of effective bits in this register is number of cores in the cluster plus 1 if IOCP is
configured (All IOCP share one bit), and the upper bit stands for all IOCP.

If the bit is 1, the coherency of (core i)’s shareable and cacheable access will be handled by SCU module, and the procedure
is transparent for software or users. We recommend users to enable each bit when use Nuclei SMP design.

If the bit i is 0, no hardware is responsible for cache coherence between this core with other cores and external masters,
so the memory space used by this core should be planned as non-sharable or non-cacheable region, if core does access the
shareable and cacheable memory of other cores, then the data coherency is software’s responsibility through Nuclei CCM
(Cache Control and Management).
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Note: If user wants to let some of cores in the cluster to share cacheable data, the program sequence is as below:

* Firstly enable Cluster Cache.

» Secondly enable Cluster Cache SMP for the cores in the cluster.
* Thirdly enable the related cores’ L1 I/D Cache.

Table 32.5: SMP_ENB Register

Field Name Bits Reset Value Description
SMP Enable 16:0 0 SMP Enable Bit for clients in the Cluster.
Each bit control one clients.
The low bit is CORE clients. high bit is IOCP
clients.
Reserved 31:17 0 Reserved 0
31 16 15 0
Reserved SMP_EN
RW

32.3.6 CC_CTRL

This register is used to control Cluster Cache specific functions and get some status.

It can only be accessed in Machine Mode.

Table 32.6: CC_CTRL register

Field Name Bits Reset Description
Value
CC_EN (EN) 0 0 CC Enable Bit.
0: Disable, 1: Enable
CC_ECC_EN (PE) 1 1 CC ECC Enable Bit.
0: Disable, 1: Enable
ECC_EXCP_EN (EE) 2 0 CC ECC Exception Enable Bit.
0: Disable, 1: Enable
LOCK_ECC_CFG 3 0 Lock the CC ECC Configuration Bit (CC_ECC_EN &
(LK) LOCK_ECC_CFQG).
0: Disable, 1: Enable.
If this bit is set to 1, previous two bits and this bit can’t
be changed by software anymore, only reset can change to
reset value 0.
LOCK_ECC_ERR_INJ 4 0 Lock CC ECC Error Injection Register.
(LK2) 0: Disable, 1: Enable.
If this bit is 1, then this bit and register CC_ERR_INJ can’t
be changed by software anymore, only reset can change to
reset value 0.
RECV_ERR_IRQ_EN 5 0 Enable the interrupt when recoverable error count exceeds
(IE1) the threshold.
0: Disable, 1: Enable
FATAL_ERR_IRQ_EN 6 0 Enable the interrupt when fatal error count exceeds the
(IE2) threshold.
0: Disable, 1: Enable
BUS_ERR_PEND 7 0 Indicate if there is Bus Error Pending of all type including
(BEP) CC maintain operation, copy-back of each client, refill bus
error, shadow tag ecc error, snoop error, L2 ECC error, bus
error of write early respond outstanding.
0: No Pending, 1: Pending.

continues on next page
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Table 32.6 — continued from previous page

Field Name Bits Reset Description
Value
BUS_ERR_IRQ_EN 8 0 Enable the Bus Error interrupt of CC maintain operation.
(BEE) 0: Disable, 1: Enable
SUP_CMD_EN 9 0 Enable S Mode can operate register CC_sCMD and
(SCE) SMP_PMON_SEL.
0: Disable, 1: Enable
USE_CMD_EN 10 0 Enable U Mode can operate register CC_uCMD and
(UCE) SMP_PMON_SEL.
0: Disable, 1: Enable
ECC_CHK_EN (CE) 11 0 CC ECC Check Enable Bit.
0: Disable, 1: Enable
CLM_ECC_EN (LPE) 12 1 CLM ECC Enable Bit.
0: Disable, 1: Enable
CLM_EXCP_EN (LEE) 13 0 CLM ECC Exception Enable Bit.
0: Disable, 1: Enable
CLM_ECC_CHK_EN 14 0 CLM ECC Check Enable Bit.
(LCE) 0: Disable, 1: Enable
PF_SH_CL_EN (PFS) 15 0 Prefetch shared cachelines Enable.
0: Disable, 1: Enable
PF L2 EARLY_EN 16 1 Prefetch L2 to biu early Enable.
(EBF) 0: Disable, 1: Enable
PF_BIU_OUTS_EN 17 0 Prefetch limit BIU outstanding.
(PFLO) 0: Disable, 1: Enable
I_SNOOP_D_EN (ICSNP) | 18 0 Snoop to dcache for icache refill reads Enable.
0: Disable, 1: Enable
IOCC_ERR{IOCE) 19 0 IOCC Has error.
0: No error, 1: Error
EARLY_WR_ERR(EWRE)| 20 0 Early write response has error
0: No error, 1: Error
Reserved 31:21 0 Reserved 0
31 21 20 19 18 15 14 9 8 7 6 5 4 3 2 1 0
| Reserved FWRE'IOCElCSNPlPFLOl EBF | PFS | LCE | LEE | LPE| CE |UCE|SCE |BEE|BEP | IE2 | IE1 |LK2 |LK1 | EE | PE | EN |

RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW RW

32.3.7 CC_mCMD

Machine Mode CC Maintain Command and Status Register.

This register is used to set specific maintain command for Cluster Cache and check the command result in Machine Mode.
When valid command is specified, the field of Complete is clear to 0 in next cycle and the command is executed, and filed
of Complete will set to 1 until the command is finished. If the WB command cause Bus Error during executing, then WB
is aborted and the Complete filed is set to 1 and update the filed of Result_Code and CC_BUS_ERR_ADDR register to
the error address. If multiple CC maintain commands have caused Bus Error, CC_BUS_ERR_ADDR register records the
latest one.

Table 32.7: CC_mCMD Register

Field Name Bits Reset Value Description

CMD 4:0 0 Cluster Cache Maintain Command Code
Reserved 22:5 0 Reserved 0

Recoverable ECC Err 23 0 Read as Recoverable ECC Error IRQ Pending,
IRQ Status Clear (RESC) write 1 will clear CC_RECV_CNT.

Fatal ECC Err 24 0 Read as Fatal ECC Error IRQ Pending, write 1
IRQ Status Clear (FESC) will clear CC_FATAL_CNT.

Bus Err Status Clear | 25 0 Read as BUS_ERR_PEND, write 1 will clear
(BESC) BUS_ERR_PEND.

Result_Code (R) 30:26 0 Result of the CMD

continues on next page
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Table 32.7 — continued from previous page

Field Name Bits Reset Value Description

Complete (C) 31 0 Indicate the CMD complete or not. 0: Not
Complete, 1: Complete

31 30 26 25 5 4 0

C R Reserved CMD

R R RW

CMD Types list in following table:

Table 32.8: CMD Types

Operation Codes Description

WB_ALL 5’b00_111 Flush all the valid and dirty cachelines,
Lock bit is not affected.

WBINVAL_ALL 5°b00_110 Unlock and Flush and invalid all the valid and dirty
cachelines.

Result Code information list in following table:

Table 32.9: Result Code

Code Fail Info

0 Command Succeed

1 Exceed the Upper entry Num of Lockable way
(N-Way Cluster Cache, Lockable is N-1)

3 Refill has Bus Error

4 ECC Error

5 Copy-Back has Bus Error

6-31 Invalid Command

32.3.8 CC_ERR_INJ

ECC Error Injection Control Register

Table 32.10: CC_ERR_INIJ Register

Field Name Bits Reset Value | Description

INJ_DATA (ID) 0 0 Inject error to CC Data Ram

INJ_TAG (IT) 1 0 Inject error to CC Tag Ram

INJ_CLM (IC) 2 0 Inject error to CLM Ram

Reserved 23:3 0 Reserved

INT_ECC_CODE 31:24 0 The content which will be injected

(ECO)

31 24 23 3 210

ECC Reserved IC|IT|ID

“TRW - RWRWRW

User can inject the ECC Code to Cluster Cache Data Ram or Tag Ram when lock the Cluster Cache Line, the steps are:

¢ Use the L1 D-Cache WBINVAL command to flush the test address’s cacheline from L1 D-Cache and Cluster Cache,
for the detail of WBINVAL command, please refer chapter CCM Mechanism.

» Set the CC_ERR_INI register.

¢ Use the Cluster Cache LOCK command to load the test address memory content into Cluster Cache’s cacheline (the
ECC Error Code will be injected to Cluster Cache Data ram and Tag RAM).

¢ Check the ccm_data CSR to know if the LOCK command succeeds or not.
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¢ Read the test address (the L1 D-Cache will read the content of Cluster Cache, the Cluster Cache ECC Error will
happen at this point).

* Check the ECC Error happen or not by ECC Exception or other methods.

32.3.9 CC_RECV_CNT

ECC Recoverable Error Count Register

This register is used to count the Cluster Cache ECC recoverable error events, it only begins to count when the ECC
function of Cluster Cache enables, and it is a saturated counter.

Table 32.11: ECC_RECV_CNT Register

Field Name Bits Reset Value | Description

CNT 15:0 0 Count the recoverable error, it is saturated

Reserved 31:16 0 Reserved 0

31 16 15 0
Reserved CNT

RW

32.3.10 CC_FATAL_CNT

ECC Fatal Error Count Register.

This register is used to count the Cluster Cache ECC fatal error events, it only begins to count when the ECC function of
Cluster Cache enables, and it is a saturated counter.

Table 32.12: ECC_FATAL_CNT Register

Field Name Bits Reset Value | Description
CNT 15:0 0 Count the fatal error, it is saturated
Reserved 31:16 0 Reserved 0
31 16 15 0
Reserved CNT
RW

32.3.11 CC_RECV_THV

ECC Recoverable Error Threshold Register.

This register is used to set the threshold value of Cluster Cache ECC recoverable errors.

Table 32.13: ECC_RECV_THYV Register

Field Name Bits Reset Value | Description

THRESHOLD 15:0 0 The threshold value of ECC recoverable error, if
the ECC_RECV_CNT value is equal or greater
than the ECC_RECV_THYV value, it will trigger
the related interrupt.

Reserved 31:16 0 Reserved 0

31 16 15 0

Reserved THRESHOLD

RW
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32.3.12 CC_FATAL_THV

ECC Fatal Error Threshold Register

This register is used to set the threshold value of Cluster Cache ECC fatal error.

Table 32.14: ECC_FATAL_THYV Register

Field Name Bits Reset Value | Description

THRESHOLD 15:0 0 The threshold value of ECC fatal error, if the
ECC_FATAL_CNT value is equal or greater than
the ECC_FATAL_THYV value, it will trigger the
related interrupt.

Reserved 31:16 0 Reserved 0

31 16 15 0

Reserved THRESHOLD

32.3.13 CC_BUS_ERR_ADDR

CC Bus Error Address Register

This register is used to record the Physical Address when user sets the address for CC Management Operation and then it

causes the Bus Error.

RW

Note: When multi bus errors happens, it only logs the first. And it only logs the cache line’s begin address, the offset inside

the cache line is ignored.

Table 32.15: CC_Bus_ERR_ADDR Register

Field Name Bits Reset Value | Description
CONST_0 5/4:0 Constant 0. When cache line is 32B, the bits of this field is
4:0.
‘When cache line is 64B, it is 5:0.
ERR_ADDR PA_SIZE:6/5 0 The error address when Bus Error happens.
63 54 0
ERR_ADDR ZERO
RW R
63 65 0
ERR_ADDR ZERO
RW R

32.3.14 CLIENT(n)_ERR_STATUS

Client Error Status Register for client(n).

This register is used to record the detail error type for the client.

Table 32.16: CLIENT_ERR_STATUS Register

Field Name Bits Reset Value | Description

READ_BUS_ERR 0 0 The error type is read bus error.
(RE)

WRITE_BUS_ERR 1 0 The error type is write bus error.
(WE)

continues on next page
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Table 32.16 — continued from previous page

Field Name Bits Reset Value | Description

CC_SCU_ECC_ERR 2 0 The error type is cluster cache tag/data , SCU

(ECC) shadow tag or snoop L1 access ECC error.

IOCP_BUS_ERR 3 0 The error type is IOCP Bus response error.

(IE) It only applies to clients hooked to IOCP Ports.

Reserved 31:16 0 Reserved 0

31 4 3 2 1 0
Reserved IE ECQWE|RE

RWRWRWRW

Note: When an error happens for the client, the register’s corresponding field is set to 1, and the field can be only written
to 0 to clear. Only when the register is 0, it can log a new error and the the corresponding address register will log the

address.

32.3.15 CC_sCMD

Supervisor Mode CC Maintain Command and Status Register.

This register is used to set specific maintain command for Cluster Cache and check the command result in Supervisor
Mode.

Table 32.17: CC_sCMD Register

Field Name Bits Reset Value Description

CMD 4:0 0 Cluster Cache Maintain Command Code

Reserved 25:5 0 Reserved 0

RESULT_CODE 30:26 0 Result of the CMD

Complete 31 0 Indicate the CMD complete or not. 0: Not
Complete, 1: Complete

31 30 26 25 5 4 0
C R Reserved CMD
R R RW

32.3.16 CC_uCMD

User Mode CC Maintain Command and Status Register.

This register is used to set specific maintain command for Cluster Cache and check the command result in User Mode.

Table 32.18: CC_uCMD Register

Field Name Bits Reset Value Description

CMD 4:0 0 Cluster Cache Maintain Command Code

Reserved 25:5 0 Reserved 0

RESULT_CODE 30:26 0 Result of the CMD

Complete 31 0 Indicate the CMD complete or not. 0: Not
Complete, 1: Complete

31 30 26 25 5 4 0

C R Reserved CMD

R R RW
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32.3.17 SNOOP_PENDING

Core Snoop Pending Register.

This register is used to check if a core’s private L1 D-Cache is snooped by other clients or not.

Table 32.19: SNOOP_PENDING Register

Field Name Bits Reset Description
Value
SNOOP_PENDING | 15:0 0 Snoop pending bit for each client in the cluster. User can

query this register’s related bit to know the snooping is fin-
ished or not when user want to disable the specific core’s

smp_en bit.
Reserved 31:16 0 Reserved 0
31 16 15 0
Reserved SNOOP_PENDING

R

32.3.18 TRANS_PENDING

Core TRANS Pending Register.

This register is used to check if a core still has load/store transactions related SCU module or not.

Table 32.20: TRANS_PENDING Register

Field Name Bits Reset Value | Description

TRANS_PENDING 15:0 0 Transaction pending bit for each core in the clus-
ter. User can query this register’s related bit
to know the core finishes all transaction related
SCU or not when user want to use Cluster Cache
WB_ALL or WBINVAL_ALL command.

Reserved 30:16 0 Reserved 0

EXT_TRANS 31 0 External Memory Bus Transaction pending bit.

31 30 16 15 0
T TRANS Reserved TRANS_PENDING

R R

32.3.19 CLM_ADDR_BASE

Cluster LM Address Base Register.

This register is to set the base address of CLM. It is aligned to Cluster Cache size.

Table 32.21: CLM_ADDR_BASE Register

Field Name Bits Reset Value Description
ADDR PA_SIZE:0O RTL Input The base address of CLM. Default value is
from RTL input value.

63 0
CLM_BASE_ADDR
RW

Note: the PMA of CLM follows the Device/Non-Cacheable/Cacheable Region partition. If the CLM is in cacheable
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region and user want to access the CLM with cache , it should enable the Cluster Cache first and enable the corresponding

L1 ICache/DCache.

32.3.20 CLM_WAY_EN

Cluster LM Way Enable Register.

This register is to set the data ram of Cluster Cache to be used as Cluster Local Memory (CLM). When bit n is 1, it means
the way n of Cluster Cache is used as Cluster Local Memory. If user has set m ways to CLM, then the CLM address is
[Cluster_ LM_ADDR_BASE ~ (Cluster_LM_ADDR_BASE + Way_Size*m)] , Way_Size is CC_Size/Num_Way.

Table 32.22: CLM_WAY_EN Register

Field Name Bits Reset Value | Description
ENA 15:0 RTL Input This way is used as CLM or not. Default value is
from RTL input value.
Reserved 31:16 0 Reserved 0.
31 16 15 0
Reserved MASK
RW

The recommended procedure for using the CLM (Cluster Local Memory) is as follows:
 Use the register CLM_Base_Addr to set the CLM Base address or the default value is (PA - Cluster Cache size).

* Use the register CLM_WAY_EN to set the size of CLM (we recommend that user should enable continuous ways,
so the CLM is one region ), or the default value is Ox7If.

» Use the register CC_CTRL to enable the Cluster Cache.
* Then user can use CLM normally with its base address and size.

* If user wants to change the CLM to Cache, please set the register CLM_WAY_EN to cut the CLM or disable CLM.
Then more SRAM can be used as Cluster Cache.

e If user wants to to change the Cache to CLM, please use the register CLM_CTRL to disable the Cluster Cache
firstly, and reset the CLM_WAY_EN (also CLM_Base_Addr if want to) to get more size for CLM , finally enable
the Cluster Cache.

32.3.21 CC_INVALID ALL

Cluster Cache Invalid All Register.

This register is used as invalid all Cluster Cache, and if some ways are set as CLM, setting of this register does not affect
the CLM.

Table 32.23: CLUSTER_CACHE_INVAL_ALL Register

Field Name Bits Reset Value | Description
CS 0 0 Write 1 will invalid all Cluster Cache, and when
the operation is done, the hardware will clear this
bit to 0 automatically.
Reserved 31:1 0 Reserved 0.
30 10
Reserved CS
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32.3.22 STM_CTRL

Stream read/write control register.

Table 32.24: STM_CTRL Register

Field Name Bits Reset Value | Description
RD_STM_EN(RSEN) | 0 0 Read stream Enable.
WR_STM_EN(WSEN) | 1 0 Write stream Enable.
TRANS_ALLOC(TRAC)2 0 Translate alloc attribute to non-alloc attribute En-
able.
RD_MERGE_EN(RMEN3} 0 Non-cachebale attribute write merge Enable.
Reserve 31:4 0 Reserved 0.
31 4 3 2 1 0
Reserved R ME+RAAZS HEEN
RWRWRWRW
32.3.23 STM_CFG
Stream read/write configuration register.
Table 32.25: STM_CFG Register
Field Name Bits Reset Value | Description
RD_BYTE_THRE(RBT)) 9:0 0 The prefetch number for Read stream.
Reserved 11:10 4 Reserved 0.
RD_DEGREE(RDGR) | 14:12 4 The delta between prefetch address and current
bus address.
Reserved 15 0 Reserved 0.
RD_DISTANCE(RDDS)) 18:16 4 The threshold bytes number matching
writestream training successfully.
Reserved 19 0 Reserved 0.
WR_BYTE_THRE(WB[T?29:20 0x20 The linebuff timeout free time when no same
cacheline transaction.
Reserve 31:30 0 Reserved 0.
31 30 29 20 19 18 16 15 14 12 11 10 9 0
Jeserved WBT ReseryedRDDReseryedRDGR Reserved RBT
RW RW RW RW
32.3.24 STM_TIMEOUT
Stream timeout register.
Table 32.26: STM_TIMEOUT Register
Field Name Bits Reset Value | Description
TIMEOUT 10:0 0 write streaming wait clk num
Reserved 31:11 4 Reserved 0.
31 11 10 0
Reserved TIMEOUT

RW
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32.3.25 DFF_PROT

Hardware register protect enable register.

Table 32.27: DFF_PROT Register

Field Name Bits Reset Value | Description
chk_en(CEN) 1:0 1 Register protect check enable.
2’b01: Disable
2’b10: Enable
Other: illegal value.
Reserved 31:2 0 Reserved 0.
31 2 1 0
Reserved CEN
RW
32.3.26 ECC_ERR_MSK
Mask L2M ECC Error to ecc_cc_error_masked or safety_error output.
Table 32.28: ECC_ERR_MSK Register
Field Name Bits Reset Value | Description
CC_L2_ERR_MSK(L2MBK) 1 Mask L2 double bit error output.
0: Not mask 1: Mask
CC_CORE_ERR_MASK(ICMSK) 1 Mask Core double bit error output.
0: Not mask 1: Mask
Reserved 31:2 0 Reserved 0.
31 2 1 0
Reserved AMEKM Sk
RWRW

32.3.27 NS_RG(n)

Non-Sharable Region Register

This register is to set a non-shareable region. It always gets 16 Non-Shareable Region registers; each register is 8 bytes.
The ADDR filed is naturally aligned power-of-2 (NAPOT) just like RISC-V PMP address coding, please find details of
NAPOT in <RISC-V Privileged Spec>.

Table 32.29: NS_RGX Register

Field Name Bits Reset Value | Description
CFG 1:0 0 0: Disable this region;
2:NACL;
3:NAPOT.
CONSTANT_ZERO 5/4:2 0 If cacheline is 32B, the width of Constant O is 3
(4:2); if cacheline is 64B, the width is 4 (5:2).
Also the granularity of the region equals to cache-
line size.
ADDR PA_SIZE:6/5 0 Coding of address and space of the region
63 54 210
ADDR VERQCFG
RW R RW
347
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63 65 210
ADDR ZERO CFQ
RW R RW
Addr CFG Match type and size
YYYY...VYyy NACL CL-byte NAPOT range (CL is cacheline)
yyyy...yyy0 NAPOT CLx2-byte NAPOT range
yyyy...yy0l NAPOT CLx4-byte NAPOT range
yyyy...y0l1 NAPOT CLx8-byte NAPOT range
yyOl... 1111 NAPOT 2°N(PA_SIZE-2)-byte NAPOT range
yOll...1111 NAPOT 2°N(PA_SIZE-1)-byte NAPOT range
0111...1111 NAPOT 2°N(PA_SIZE)-byte NAPOT range
1111... 1111 NAPOT 2NPA_SIZE+1)-byte NAPOT range

32.3.28 SMP_PMON_SEL(n)

Performance Monitor Event Selector Register

This register is to select Cluster Cache micro-architecture event to monitor the performance.

Table 32.31: Performance Monitor Event Selector Register

Field Name Bits Reset Value | Description

EVENT_SEL 15:0 0 Select the event for this Performance Monitor
Counter

CLIENT_SEL 20:16 0 Specify the core in the cluster or external master
number hooked to I/O Coherency Port

Reserved 31:21 0 Reserved 0

31 21 20 16 15 0

Reserved CLIENT_SEL EVENT_SEL
RW RW

The EVENT_SEL coding is:

Table 32.32: Cluster Cache Performance Monitor Events

Event Name

Disable monitor

Data Read Count

Data Write Count

Instruction Read Count

Data Read CC Hit Count

CC Replace Count for Data Write
CC Replace Count for Data Read
Data Read CC Miss Count
Instruction Read CC Hit Count
Instruction Read CC Miss Count
CC Replace Count for Instruction Read

<
=}
c
D

S| RN R RN -=D

o
=

The CLIENT_SEL value is from O and the core number or external master number is fixed for a Nuclei delivered Core
IP design. For example, there is a four cores cluster with 4 I/O coherency ports and user hook 4 master devices to each
coherency port, then O means core 0 in the cluster, 3 means core 3 in the cluster, 4 means master hooked to I/O coherency
port 0, 7 means master hooked to port 3.
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32.3.29 SMP_PMON_CNT(n)

Performance Monitor Event Counter Register.

This register is to count the specific event as the corresponding selector register selects.

Table 32.33: Performance Monitor Event Counter Register

Field Name

Bits

Reset
Value

Description

CNT

63:0

0

If the event selected happens once, the value adds 1. If
it overflows, hardware will set the Overflow bit in corre-
sponding Performance Event Selector Register and let this
value begin to count from 0.

63

Counter

32.3.30 CLIENT(n)_ERR_ADDR

Client Error Address Register.

RW

This register is used to record the detail physical address for the client when error happens.

Table 32.34: CLIENT_ERR_ADDR Register

Field Name Bits Reset Value | Description
ERR_ADDR PA_SIZE:0 0 The error address when Error happens for the
client. It only can be updated when correspond-
ing Error Status register is 0.
63 0
ERR_ADDR
RW

32.3.31 CLIENT(n)_WAY_MASK

Client Way Mask Register.
This register is to set the Cluster Cache ways which can be used by the client when it writes allocate to Cluster Cache. If
the bit n is 1, then this way can’t be used by this client.

Table 32.35: CLIENT_WAY_MASK Register

Field Name Bits Reset Value | Description
MASK 15:0 0 Mask this way for the client.
Reserved 31:16 0 Reserved 0.
31 16 15 0
Reserved MASK
RW
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32.3.32 IOCP_PPI_REGION_EN

PPI region enable register.

This register is to enable ppi region as device attribute for IOCP master.

Table 32.36: IOCP_PPI_REGION Register

Field Name Bits Reset Value | Description
EN 0 0 Enable
Reserved 31:1 0 Reserved 0.
31 1 0
Reserved EN
RW
32.3.33 IOCP_CPPI_REGION_EN
CPPI region enable register.
This register is to enable cppi region as device attribute for [OCP master.
Table 32.37: IOCP_CPPI_REGION Register
Field Name Bits Reset Value | Description
EN 0 0 Enable
Reserved 31:1 0 Reserved 0.
31 1 0
Reserved EN
RW
32.3.34 I0CP_DEV_REGION_L_BASE
This register is to define the low 32bit device attribute memory region address for IOCP master.
Table 32.38: IOCP_DEV_REGION_L_BASE Register
Field Name Bits Reset Value | Description
EN 0 0 This register enable.
DEV 1 0 If 1, this region attribute is device.
NC 2 0 If 1, this region attribute is non-cacheable.
Reserved 11:3 0 Reserved 0.
PA 31:12 0 The base address.
31 12 11 3 2 10
PA Reserved NC )EE+‘
RW RWV
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32.3.35 IOCP_DEV_REGION_L_MASK

This register is to define the low 32 bit device attribute memory region address mask for IOCP master.

Table 32.39: IOCP_DEV_REGION_L_MASK Register

Field Name Bits Reset Value | Description
Reserved 11:0 0 Reserved 0.
MASK 31:12 0 The address mask.
31 12 11 0
MASK Reserved
32.3.36 IOCP_DEV_REGION_H BASE
This register is to define the high 32 bit device attribute memory region base address for IOCP master.
If PA_SIZE is less than 32, this register read 0 , write ignore.
32.3.37 IOCP_DEV_REGION_H_MASK
This register is to define the high 32 bit device attribute memory region address mask for IOCP master.
If PA_SIZE is less than 32, this register read O , write ignore.
32.3.38 IOCP_NOC_REGION(n)_L_BASE
This register is to define the low 32bit non-cacheable attribute memory region address for IOCP master.
Table 32.40: IOCP_NOC_REGION_L_BASE Register
Field Name Bits Reset Value | Description
EN 0 0 This register enable.
Reserved 1 0 Reserved 0.
NC 2 0 If 1, this region attribute is non-cacheable.
Reserved 11:3 0 Reserved 0.
PA 31:12 0 The base address.
31 12 11 32 10
PA Reserved NRegsesh
RW RV
32.3.39 IOCP_NOC_REGION(n) L_MASK
This register is to define the low 32 bit non-cacheable attribute memory region address mask for [IOCP master.
Table 32.41: IOCP_NOC_REGION_L_MASK Register
Field Name Bits Reset Value | Description
Reserved 11:0 0 Reserved 0.
MASK 31:12 0 The address mask.
31 12 11 0
MASK Reserved
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32.3.40 IOCP_NOC_REGION(n) H_BASE

This register is to define the high 32 bit non-cacheable attribute memory region base address for IOCP master.

If PA_SIZE is less than 32, this register read O , write ignore.

32.3.41 IOCP_NOC_REGION(n) H_MASK

This register is to define the high 32 bit non-cacheable attribute memory region address mask for [OCP master.

If PA_SIZE is less than 32, this register read O , write ignore.

32.3.42 I0CP_DEV_MACRO_REGION_EN

Hardware CFG_DEVICE_REGION entry enable register.

This register is to enable device region entry as device attribute for IOCP master.

Table 32.42: IOCP_DEV_MACRO_REGION_EN Register

Field Name Bits Reset Value | Description

ENTRYO_EN(ENO) 0 1 Entry 0 enable.
ENTRY1_EN(EN1) 1 1 Entry 1 enable.
ENTRY2_EN(EN2) 2 1 Entry 2 enable.
ENTRY3_EN(EN3) 3 1 Entry 3 enable.
ENTRY4_EN(EN4) 4 1 Entry 4 enable.
ENTRYS5_EN(ENS) 5 1 Entry 5 enable.
ENTRY5_EN(ENG6) 6 1 Entry 6 enable.
ENTRY7_EN(EN7) 7 1 Entry 7 enable.
Reserved 31:8 0 Reserved 0.

31

Reserved

8 7 6 54 3 2 10

EN7ENG

ENS

EN4

EN3

EN2

ENT

ENO

32.3.43 I0CP_NOC_MACRO_REGION_EN

Hardware CFG_NC_REGION entry enable register.

RWRWRWRWRWRWRWRW

This register is to enable non-cacheable region entry as non-cacheable attribute for IOCP master.

Table 32.43: IOCP_NOC_MACRO_REGION_EN Register

Field Name Bits Reset Value | Description

ENTRYO_EN(ENO) 0 1 Entry 0 enable.
ENTRY1_EN(ENI) 1 1 Entry 1 enable.
ENTRY2_EN(EN2) 2 1 Entry 2 enable.
ENTRY3_EN(EN3) 3 1 Entry 3 enable.
ENTRY4_EN(EN4) 4 1 Entry 4 enable.
ENTRYS5_EN(ENS) 5 1 Entry 5 enable.
ENTRYS5_EN(ENG6) 6 1 Entry 6 enable.
ENTRY7_EN(EN7) 7 1 Entry 7 enable.
Reserved 31:8 0 Reserved 0.

31 8 7 6 5 4 3 2 10
Reserved EN7ENGENFENAENFEN2ENIENQ

RWRWRWRWRW RWRWRW
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32.3.44 IOCP_CACH_MACRO_REGION_EN

Hardware CFG_CACHEABLE_REGION entry enable register.

This register is to enable cacheable region entry as cacheable attribute for [IOCP master.

Table 32.44: IOCP_CACH_MACRO_REGION_EN Register

Field Name Bits Reset Value | Description

ENTRYO_EN(ENO) 0 1 Entry O enable.
ENTRY1_EN(EN1) 1 1 Entry 1 enable.
ENTRY2_EN(EN2) 2 1 Entry 2 enable.
ENTRY3_EN(EN3) 3 1 Entry 3 enable.
ENTRY4_EN(EN4) 4 1 Entry 4 enable.
ENTRY5_EN(ENS) 5 1 Entry 5 enable.
ENTRYS5_EN(ENG6) 6 1 Entry 6 enable.
ENTRY7_EN(EN7) 7 1 Entry 7 enable.
Reserved 31:8 0 Reserved 0.

31

8 7 6 54 3 2 10

Reserved

ENZENGENENAENFENZENIENC

32.4 SMP and Cluster Cache Error Handling

RWRWRWRWRWRWRWRW

Previous section introduces that Cluster Cache may report Bus Error or ECC Error, to easy customer handle these errors,
the SMP and CC module gathers all the Bus Error and ECC Errors events and report the events as an Internal Interrupt
to all cores (please refer to Interrupt Type (page 24) and Internal Interrupt (page 25) to review the concept) , and the
Interrupt ID is fixed to 17.

32.4. SMP and Cluster Cache Error Handling
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Riscv Smepmp Extension

PMP Enhancements for memory access and execution prevention on Machine mode Extension.

Version: v1.0, 12/2021

33.1 Introduction

Being able to access the memory of a process running at a high privileged execution mode, such as the Supervisor or
Machine mode, from a lower privileged mode such as the User mode, introduces an obvious attack vector since it allows
for an attacker to perform privilege escalation, and tamper with the code and/or data of that process. A less obvious
attack vector exists when the reverse happens, in which case an attacker instead of tampering with code and/or data that
belong to a high-privileged process, can tamper with the memory of an unprivileged / less-privileged process and trick the
high-privileged process to use or execute it.

To prevent this attack vector, two mechanisms known as Supervisor Memory Access Prevention (SMAP) and Supervisor
Memory Execution Prevention (SMEP) were introduced in recent systems. The first one prevents the OS from accessing
the memory of an unprivileged process unless a specific code path is followed, and the second one prevents the OS from
executing the memory of an unprivileged process at all times. RISC-V already includes support for SMAP, through
the sstatus.SUM bit, and for SMEP by always denying execution of virtual memory pages marked with the U bit, with
Supervisor mode (OS) privileges, as mandated on the Privilege Spec.

Terms:
e PMP Entry: A pair of pmpcfg[i] / pmpaddr[i] registers.

e PMP Rule: The contents of a pmpcfg register and its associated pmpaddr register(s), that encode a valid protected
physical memory region, where pmpcfg[i].A != OFF, and if pmpcfg[i].A == TOR, pmpaddr[i-1] < pmpaddr[i].

* Ignored: Any permissions set by a matching PMP rule are ignored, and all accesses to the requested address range
are allowed.

 Enforced: Only access types configured in the PMP rule matching the requested address range are allowed; failures
will cause an access-fault exception.

* Denied: Any permissions set by a matching PMP rule are ignored, and no accesses to the requested address range
are allowed.; failures will cause an access-fault exception.

* Locked: A PMP rule/entry where the pmpcfg.L bit is set.

* PMP reset: A reset process where all PMP settings of the hart, including locked rules/settings, are re-initialized to
a set of safe defaults, before releasing the hart (back) to the firmware / OS / application.
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33.1.1 Threat model

However, there are no such mechanisms available on Machine mode in the current (v1.11) Privileged Spec. It is not
possible for a PMP rule to be enforced only on non-Machine modes and denied on Machine mode, to only allow access to
a memory region by less-privileged modes. it is only possible to have a locked rule that will be enforced on all modes, or
a rule that will be enforced on non-Machine modes and be ignored by Machine mode. So for any physical memory region
which is not protected with a Locked rule, Machine mode has unlimited access, including the ability to execute it.

Without being able to protect less-privileged modes from Machine mode, it is not possible to prevent the mentioned attack
vector. This becomes even more important for RISC-V than on other architectures, since implementations are allowed
where a hart only has Machine and User modes available, so the whole OS will run on Machine mode instead of the
non-existent Supervisor mode. In such implementations the attack surface is greatly increased, and the same kind of
attacks performed on Supervisor mode and mitigated through SMAP/SMEP, can be performed on Machine mode without
any available mitigations. Even on implementations with Supervisor mode present attacks are still possible against the
Firmware and/or the Secure Monitor running on Machine mode.

33.2 Proposal

1. Machine Security Configuration (mseccfg) is a new RW Machine mode CSR, used for configuring various security
mechanisms present on the hart, and only accessible to Machine mode. It is 64 bits wide, and is at address 0x747
on RV64 and 0x747 (low 32bits), 0x757 (high 32bits) on RV32. All mseccfg fields defined on this proposal are
WARL, and the remaining bits are reserved for future standard use and should always read zero. The reset value of
mseccfg is implementation-specific, otherwise if backwards compatibility is a requirement it should reset to zero on
hard reset.

2. On mseccfg we introduce a field on bit 2 called Rule Locking Bypass (mseccfg.RLB) with the following function-
ality:

a. When mseccfg.RLB is 1 locked PMP rules may be removed/modified and locked PMP entries may be edited.

b. When mseccfg.RLB is 0 and pmpcfg.L is 1 in any rule or entry (including disabled entries), then mseccfg.RLB
remains 0 and any further modifications to mseccfg.RLB are ignored until a PMP reset.

Note: that this feature is intended to be used as a debug mechanism, or as a temporary workaround during the boot
process for simplifying software, and optimizing the allocation of memory and PMP rules. Using this functionality
under normal operation, after the boot process is completed, should be avoided since it weakens the protection of
M-mode-only rules. Vendors who don’t need this functionality may hardwire this field to 0.

3. On mseccfg we introduce a field in bit 1 called Machine Mode Whitelist Policy (mseccfg. MMWP). This is a sticky
bit, meaning that once set it cannot be unset until a PMP reset. When set it changes the default PMP policy for
M-mode when accessing memory regions that don’t have a matching PMP rule, to denied instead of ignored.

4. On mseccfg we introduce a field in bit O called Machine Mode Lockdown (mseccfg. MML). This is a sticky bit,
meaning that once set it cannot be unset until a PMP reset. When mseccfg. MML is set the system’s behavior
changes in the following way:

a. The meaning of pmpcfg.L changes: Instead of marking a rule as locked and enforced in all modes, it now
marks a rule as M-mode-only when set and S/U-mode-only when unset. The formerly reserved encoding of
pmpcfg. RW=01, and the encoding pmpcfg. LRWX=1111, now encode a Shared-Region.

An M-mode-only rule is enforced on Machine mode and denied in Supervisor or User mode. It also remains
locked so that any further modifications to its associated configuration or address registers are ignored until a
PMP reset, unless mseccfg.RLB is set.

An S/U-mode-only rule is enforced on Supervisor and User modes and denied on Machine mode.

A Shared-Region rule is enforced on all modes, with restrictions depending on the pmpcfg.L and pmpcfg.X
bits:

* A Shared-Region rule where pmpcfg.L is not set can be used for sharing data between M-mode and S/U-
mode, so is not executable. M-mode has read/write access to that region, and S/U-mode has read access
if pmpcfg.X is not set, or read/write access if pmpcfg.X is set.
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* A Shared-Region rule where pmpcfg.L is set can be used for sharing code between M-mode and S/U-
mode, so is not writeable. Both M-mode and S/U-mode have execute access on the region, and M-mode
also has read access if pmpcfg.X is set. The rule remains locked so that any further modifications to its
associated configuration or address registers are ignored until a PMP reset, unless mseccfg.RLB is set.

* The encoding pmpcfg. LRWX=1111 can be used for sharing data between M-mode and S/U mode, where
both modes only have read-only access to the region. The rule remains locked so that any further modifica-
tions to its associated configuration or address registers are ignored until a PMP reset, unless mseccfg.RLB

is set.

b. Adding a rule with executable privileges that either is M-mode-only or a locked Shared-Region is not possible
and such pmpcfg writes are ignored, leaving pmpcfg unchanged. This restriction can be temporarily lifted e.g.
during the boot process, by setting mseccfg.RLB.

c. Executing code with Machine mode privileges is only possible from memory regions with a matching M-
mode-only rule or a locked Shared-Region rule with executable privileges. Executing code from a region
without a matching rule or with a matching S/U-mode-only rule is denied.

d. If mseccfg. MML is not set, the combination of pmpcfg.RW=01 remains reserved for future standard use.

33.2.1 Truth table when mseccfg.MML is set

Bits on pmpcfg register

L R
0 0
0 0
0 0
0 0
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

W

0

Result
M Mode S/U Mode
Inaccessible region (Access Exception)
Access Exception Execute-only region

Shared data region: Read/write on M mode, read-only on S/U
mode

Shared data region: Read/write for both M and S/U mode

Access Exception Read-only region
Access Exception Read /Execute region
Access Exception Read/Write region
Access Exception Read/Write/ Execute region

Locked inaccessible region* (Access Exception)
Locked Execute-only region* Access Exception

Locked Shared code region: Execute only on both M and S/U
mode.*

Locked Shared code region: Execute only on S/U mode,
read/execute on M mode.*

Locked Read-only region* Access Exception
Locked Read/Execute region* Access Exception
Locked Read/Write region* Access Exception

Locked Shared data region: Read only on both M and S/U mode.*

Fig. 33.1: Truth table when mseccfg. MML is set
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: Locked rules cannot be removed or modified until a PMP reset, unless mseccfg.RLB is set.

33.2.2 Visual representation of the proposal

XLEN - 1 ses 2 1 c]
mseccfg Reserved for future use | RLB | MMWP | MML |
> Machine Mode Lockdown (remains 1 when set)
Machine Mode Whitelist Policy (remains 1 when set)
» Rule Locking Bypass (remains 0 if at least
one of pmpefglil.L=1)
Matching region - [
found for mseccfg. MML mseccfg.MML

requested address Pﬂ“fg L ==

S/UMode | M Mode

Mt

pmpcfg. RWX S$/UMode | MMode

Re{d Re{d
Read Read & E::c:te ExTc:te Sh.:ad
futuze ¢ R:::y& F:::; ea. E:::}u’;:e noe::y& Locked
Write Write Only Execute
Shared | T

No new rules with
executable privileges
may be added unless
mseccfg.RLB is set

Matching region

not found for -seCCfg'ML == .SECCfg'ML . Enforced: R/W/Xbits determine permissions
requested address Ignored:  Access granted
S/UMode | MMode |S/UMode M Mode Denied:  Access denied
MMWP == RW Locked:  Rule's registers can't be modified
aseccfo. ° L e Ignored (pmpcfgli], pmpaddr[i], and
lseccfgl MMWP == 1 -if pmcfg[i] .A==TOR- pmpaddr[i‘l])

Fig. 33.2: visual representation of the proposal

33.2.3 Smepmp software discovery

Since all fields defined on mseccfg as part of this proposal are locked when set (MMWP/MML) or locked when cleared
(RLB), software can’t poll them for determining the presence of Smepmp. It is expected that BootROM will set msec-
cfg. MMWP and/or mseccfg. MML during early boot, before jumping to the firmware, so that the firmware will be able to
determine the presence of Smepmp by reading mseccfg and checking the state of mseccfg. MM WP and mseccfg. MML.
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33.3 Rationale

1. Since a CSR for security and / or global PMP behavior settings is not available with the current spec, we needed to
define a new one. This new CSR will allow us to add further security configuration options in the future and also
allow developers to verify the existence of the new mechanisms defined on this proposal.

2. There are use cases where developers want to enforce PMP rules in M-mode during the boot process, that are also
able to modify, merge, and / or remove later on. Since a rule that is enforced in M-mode also needs to be locked (or
else badly written or malicious M-mode software can remove it at any time), the only way for developers to approach
this is to keep adding PMP rules to the chain and rely on rule priority. This is a waste of PMP rules and since it’s
only needed during boot, mseccfg.RLB is a simple workaround that can be used temporarily and then disabled and
locked down.

Also when mseccfg.MML is set, according to 4b it’s not possible to add a Shared-Region rule with executable
privileges. So RLB can be set temporarily during the boot process to register such regions. Note that it’s still
possible to register executable Shared-Region rules using initial register settings (that may include mseccfg. MML
being set and the rule being set on PMP registers) on PMP reset, without using RLB.

Note: Be aware that RLB introduces a security vulnerability if left set after the boot process is over and
in general it should be used with caution, even when used temporarily. Having editable PMP rules in
M-mode gives a false sense of security since it only takes a few malicious instructions to lift any PMP
restrictions this way. It doesn’t make sense to have a security control in place and leave it unprotected.
Rule Locking Bypass is only meant as a way to optimize the allocation of PMP rules, catch errors durring
debugging, and allow the bootrom/firmware to register executable Shared-Region rules. If developers /
vendors have no use for such functionality, they should never set mseccfg.RLB and if possible hard-wire
it to 0. In any case RLB should be disabled and locked as soon as possible.

Note: If mseccfg.RLB is not used and left unset, it wil be locked as soon as a PMP rule/entry with the
pmpcfg.L bit set is configured.

Note: Since PMP rules with a higher priority override rules with a lower priority, locked rules must
precede non-locked rules.

3. With the current spec M-mode can access any memory region unless restricted by a PMP rule with the pmpcfg.L
bit set. There are cases where this approach is overly permissive, and although it’s possible to restrict M-mode by
adding PMP rules during the boot process, this can also be seen as a waste of PMP rules. Having the option to block
anything by default, and use PMP as a whitelist for M-mode is considered a safer approach. This functionality may
be used during the boot process or upon PMP reset, using initial register settings.

4. The current dual meaning of the pmpcfg.L bit that marks a rule as Locked and enforced on all modes is neither
flexible nor clean. With the introduction of Machine Mode Lock-down the pmpcfg.L bit distinguishes between rules
that are enforced only in M-mode (M-mode-only) or only in S/U-modes (S/U-mode-only). The rule locking becomes
part of the definition of an M-mode-only rule, since when a rule is added in M mode, if not locked, can be modified
or removed in a few instructions. On the other hand, S/U modes can’t modify PMP rules anyway so locking them
doesn’t make sense.

a. This separation between M-mode-only and S/U-mode-only rules also allows us to distinguish which regions are
to be used by processes in Machine mode (pmpcfg.L. == 1) and which by Supervisor or User mode processes
(pmpcfg.L == 0), in the same way the U bit on the Virtual Memory’s PTEs marks which Virtual Memory
pages are to be used by User mode applications (U=1) and which by the Supervisor / OS (U=0). With this
distinction in place we are able to implement memory access and execution prevention in M-mode for any
physical memory region that is not M-mode-only.

An attacker that manages to tamper with a memory region used by S/U mode, even after successfully tricking
a process running in M-mode to use or execute that region, will fail to perform a successful attack since that
region will be S/U-mode-only hence any access when in M-mode will trigger an access exception.

In order to support zero-copy transfers between M-mode and S/U-mode we need to either allow shared memory
regions, or introduce a mechanism similar to the sstatus.SUM bit to temporary allow the high-privileged mode
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(in this case M-mode) to be able to perform loads and stores on the region of a less-privileged process (in
this case S/U-mode). In our case after discussion within the group it seemed a better idea to follow the first
approach and have this functionality encoded on a per-rule basis to avoid the risk of leaving a temporary, global
bypass active when exiting M-mode, hence rendering memory access prevention useless.

Although it’s possible to use mstatus. MPRV in M-mode to read/write data on an S/U-mode-only region using
general purpose registers for copying, this will happen with S/U-mode permissions, honoring any MMU re-
strictions put in place by S-mode. Of course it’s still possible for M-mode to tamper with the page tables and /
or add S/U-mode-only rules and bypass the protections put in place by S-mode but if an attacker has managed
to compromise M-mode to such extent, no security guarantees are possible in any way. Also note that the
threat model we present here assumes buggy software in M-mode, not compromised software. We considered
disabling mstatus.MPRV but it seemed too much and out of scope.

Shared-region rules can be used both for zero-copy data transfers and for sharing code segments. The latter
may be used for example to allow S/U-mode to execute code by the vendor, that makes use of some vendor-
specific ISA extension, without having to go through the firmware with an ecall. This is similar to the vDSO
approach followed on Linux, that allows userspace code to execute kernel code without having to perform a
system call.

To make sure that shared data regions can’t be executed and shared code regions can’t be modified, the en-
coding changes the meaning of the pmpcfg.X bit. In case of shared data regions, with the exception of the
pmpcfg. LRWX=1111 encoding, the pmpcfg.X bit marks the capability of S/U-mode to write to that region, so
it’s not possible to encode an executable shared data region. In case of shared code regions, the pmpcfg.X bit
marks the capability of M-mode to read from that region, and since pmpcfg.RW=01 is used for encoding the
shared region, it’s not possible to encode a shared writable code region.

Note: For adding Shared-region rules with executable privileges to share code segments between M-mode
and S/U-mode, mseccfg.RLB needs to be implemented, or else such rules can only be added together with
mseccfg. MML being set on PMP Reset. That’s because the reserved encoding pmpcfg.RW=01 being used
for Shared-region rules is only defined when mseccfg. MML is set, and 4b prevents the adition of rules with
executable privileges on M-mode after mseccfg. MML is set unless mseccfg.RLB is also set.

Using the pmpcfg. LRWX=1111 encoding for a locked shared read-only data region was decided later on, its
initial meaning was an M-mode-only read/write/execute region. The reason for that change was that the already
defined shared data regions were not locked, so r/w access to M-mode couldn’t be restricted. In the same way
we have execute-only shared code regions for both modes, it was decided to also be able to allow a least-
privileged shared data region for both modes. This approach allows for example to share the .text section of
an ELF with a shared code region and the .rodata section with a locked shared data region, without allowing
M-mode to modify .rodata. We also decided that having a locked read/write/execute region in M-mode doesn’t
make much sense and could be dangerous, since M-mode won’t be able to add further restrictions there (as in
the case of S/U-mode where S-mode can further limit access to an pmpcfg. LWRX=0111 region through the
MMU), leaving the possibility of modifying an executable region in M-mode open.

For encoding Shared-region rules initially we used one of the two reserved bits on pmpcfg (bit 5) but in order
to avoid allocating an extra bit, since those bits are a very limited resource, it was decided to use the reserved
R=0,W=1 combination.

b. The idea with this restriction is that after the Firmware or the OS running in M-mode is initialized and msec-
cfg. MML is set, no new code regions are expected to be added since nothing else is expected to run in M-mode
(everything else will run in S/U mode). Since we want to limit the attack surface of the system as much as pos-
sible, it makes sense to disallow any new code regions which may include malicious code, to be added/executed
in M-mode.

c. In case mseccfg. MMWP is not set, M-mode can still access and execute any region not covered by a PMP rule.
Since we try to prevent M-mode from executing malicious code and since an attacker may manage to place
code on some region not covered by PMP (e.g. a directly-addressable flash memory), we need to ensure that
M-mode can only execute the code segments initialized during firmware / OS initialization.

d. We are only using the encoding pmpcfg. RW=01 together with mseccfg. MML, if mseccfg. MML is not set the
encoding remains usable for future use.
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34.1 Revision History

WorldGuard Specification

Rev. Revision Date Revised Section | Revised Content
0.1 2022/10/31 N/A
1. Initial draft, from WorldGuard HAS Specification
1.1
0.2 2022/11/20 N/A
1. Second draft, for donation to RVIA
0.3 2023/4/03 N/A
1. Donated to RVIA
0.4 2023/4/27 N/A
1. Clarified checker operation.
2. Made clear that accesses other than 32b can be used.
3. Removed optional on NAPOT, as whole design is
only a recommendation.
4. Removed requirement for hardware to reset bad ad-
dress to bottom of checker range.

Note: 0.4 This update adds clarifications to the generic wgChecker design spec, and simplifies its handling of bad ad-

dresses.

34.2 Glossary/ Acronyms

Term Meaning

CSR Control and Status Register

MMU Memory Management Unit

Privilege The RISC-V privilege specification defines up to five privilege modes: M, [HS], U, VS, VU
modes

REE Rich Execution Environment

TEE Trusted Execution Environment

WID WorldGuard world identifier

WG WorldGuard

XLEN Refers to the width of an integer register in bits (either 32 or 64)
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34.3 WorldGuard Overview

WorldGuard (WG) provides isolation in a hardware platform by constraining access to system physical addresses. WG
provides Worlds , which are execution contexts that include agents (such as harts and devices) that can initiate a transaction
on a physical address within a world, and resources (such as memories and peripheral devices) that respond to transactions
at a physical address within a world. Worlds are created and configured by a trusted execution environment, usually at
system boot time.

Worlds are uniquely identified by a hardware World Identifier (WID) and the maximum number of unique WIDs on a
platform is NWorlds. Increasing NWorlds increases the hardware cost, and in practice, 2-8 WIDs (requiring 1-3 bits to
represent) are sufficient for many use cases.

Hardware agents (harts and devices) that can initiate transactions on physical addresses may support multiple contexts,
with each context potentially being in a different world. A software context running on a hart agent is present in one world
at a time. A hardware context on a device agent is present in one world at a time.

Resources are identified by system physical addresses. A world may be granted read, write, or both, access permissions
on a physical address. A resource can optionally be shared between worlds, with independent access permissions for each
world.

WG is designed for the case where the allocation of agent contexts and resources to worlds is performed before or at
reset/boot time, and not changed dynamically when the system is running unless there is a system reset. Efficiently changing
WG configurations dynamically while the system is running is not a goal of the current specification.

When an agent context initiates a transaction to a physical address, hardware marks the transaction with the WID of the
agent context. The transaction is only allowed to complete successfully if the targeted resource has the appropriate access
permissions (read or write) on that address for the WID on the transaction. The permission checks might be performed
at the agent, at the resource, or anywhere along the path the transaction takes through the platform’s bus hierarchy. The
bus transaction carries the WID through the interconnect and all elements on the path toward the targeted resource until
access permissions can be checked. The method of propagating and checking the WID on busses is platform-specific, with
different bus fabrics supporting WIDs in bus-specific ways.

Note: Theoretically all permissions checks on transactions could be performed at the source agent to prevent any illegal
transactions from entering the bus fabric. But in practice, replicating and checking the entire platform permissions map
at each agent is prohibitively expensive, particularly when permissions are configurable, and so WG assumes permissions
checking is distributed out in the bus fabric and attached resources.

If the permission check fails, the transaction is terminated or modified to avoid violating world isolation and the failure
may be reported. Failures may be reported in a number of ways depending on the platform, the agent, the resource, and
the transaction type. Failures may be reported to the initiating agent, and optionally one or more other agents. In some
cases, the failure cannot be directly reported to the initiating agent and the transaction is modified to be ignored or to return
benign data. In these cases, the failure may still be reported to a different agent through an alternate mechanism.

34.4 RISC-V ISA WorldGuard Extensions

RISC-V harts that support WorldGuard associate a WID with all memory accesses initiated by that hart. The WorldGuard
extensions allow different privilege modes on a hart to be tagged with different WIDs.

There are three levels of WG support on RISC-V harts. The first level does not require an ISA extension and fixes the WID
for all privilege modes on a hart. The second level is the Smwg extension, which enables M-mode to control the WID of
lower-privilege modes. The third level is the Smwgd extension, which further enables M-mode to delegate to [H]S-mode
the ability to assign the WID of lower-privilege modes, thereby adding the Sswg extension to [H]S-mode.

All accesses, including implicit memory references such as instruction fetches and page-table walks, must be tagged with
the appropriate WID. For the purposes of WG permissions, instruction fetches are treated as memory reads.

Note: Bus fabrics typically do not differentiate instruction fetches from memory reads, and so WG permissions checkers
located on the other side of the bus fabric are unable to distinguish these two cases.
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WorldGuard does not allow a privilege mode to change its own WID. The WID of M-mode on a hart is set by the external
environment and does not change between resets.

Note: Different harts in a system may have different WIDs in M-mode.

34.4.1 WorldGuard CSRs

The WorldGuard Smwg, Smwgd, and Sswg extensions allow a hart to assign WIDs to its privilege modes. The new CSRs
are listed in the Table below.

Size Register Access | Proposed Description
bits CSR Ad-
dress

XLEN mlwid MRW 0x390 WID used for lower privilege modes. Ceil(Log2NWorlds)
LSBs are used, others are zero.

XLEN mwiddeleg MRW 0x748 Set of WID values delegated to [HS]-mode, represented as a
bit vector. NWorlds LSBs are used, others are zero.

XLEN slwid [HS]RW | 0x190 WID value used in lower modes (i.e., U, VS, or VU).
Ceil(Log2NWorlds) LSBs are used, others are zero.

These extensions supports NWorlds < XLEN.

34.4.2 One world per hart

In this case, there are no ISA-visible additions to the RISC-V hart. The hart is reset into a single world and all transactions
from that hart, regardless of privilege mode, are tagged with the WID of that world. How the hart is assigned to a world,
or whether and how a hart is allowed to determine any information about WG configuration is platform-specific.

34.4.3 Smwg extension
The Smwg extension adds support for M-mode to control the world used by less-privileged modes, and can only be added
to harts with at least two privilege modes.

The Smwg extension adds the mlwid CSR, which is an M-mode read-write CSR, whose least- significant bits set the WID
to be used by lower-privilege modes.

Note: If the system supports demand-paged virtual memory, then any address-translation caches must ensure that trans-
lations are cached separately for each WID. A simple implementation can flush address-translation caches on any mlwid
write.

The mlwid CSR is WARL, and if an illegal WID is written, the lowest-numbered legal WID is returned. It is platform-
specific which worlds can be used by lower-privilege modes on this hart.

Note: M-mode software can use the WARL property of mlwid to discover which worlds are available to be assigned to
lower modes, though in normal use, platform software will have predetermined allocations for the worlds on a platform.

Note: We constrain WARL behavior to reduce compatibilty-testing effort. Also, having a defined value slightly reduces
time to dynamically search for valid WIDs.

M-mode may have a different WID than any assignable by mlwid to lower-privilege modes.

Note: The platform is not required to allow lower-privilege modes to be in the same world as M-mode.
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At reset, mlwid must hold a WID that can be allocated to lower modes.

34.4.4 Smwgd / Sswg extensions

The Smwgd extension requires the Smwg extension and allows M-mode to delegate to [H]S-mode the ability to allocate
WIDs to privilege modes lower than [H]S. The Smwgd extension optionally enables the Sswg extension for [H]S-mode.

The Smwgd extension adds the mwiddeleg M-mode read-write CSR. The mwiddeleg register represents a set of WIDs as
a bit vector with WID i represented by bit i of the register. The mwiddeleg CSR is a WARL register where each bit that
can be set indicates a WID that is delegated to [H]S-mode. The set of worlds that can be delegated to [H]S-mode on a hart
is platform-specific.

Note: Different harts on a platform can have different sets of delegatable worlds.

The Sswg extension adds the [H]S-mode read-write slwid CSR, which sets the WID used for modes lower than [H]S-
mode. The slwid is WARL, with mwiddeleg specifying the legal values for slwid. If an illegal WID is written to slwid, the
lowest-numbered legal WID is returned. When Sswg is present, mlwid now specifies the WID for [H]S-mode only, and
slwid specifies the WID for lower-privilege modes (U, VS, VU).

If the value in mwiddeleg is non-zero, the Sswg extension is enabled. When mwiddeleg is set to a non- zero value, slwid
is initialized to the lowest-numbered world present in mwiddeleg.

If the value in mwiddeleg is zero, then the Sswg extension is disabled and accesses to slwid raise an illegal instruction
exception.

Note: If the system supports demand-paged virtual memory, then any address-translation caches must ensure that trans-
lations are cached separately for each WID. A simple implementation can flush address-translation caches on any write to
mwiddeleg or slwid.

When the hypervisor extension is present slwid sets the WID for both VS and VU mode, as well as U mode.

Note: The Sswg extension is not available to a guest OS.

There is no requirement for mwiddeleg to contain the WID in mlwid, i.e., S-mode can be set to a different world than the
ones it is allowed to assign to lower modes using slwid when Sswg is enabled.

At reset, mwiddeleg is set to zero and hence Sswg is disabled.

34.4.5 Response to permission violations

When a hart attempts an explicit or implicit memory access that fails a WG permissions check, the access may or may not
raise an access-fault exception of the appropriate type (i.e., instruction- access fault, load-access fault, or store/ AMO-access
fault). When an access-fault exception cannot be raised, the instruction performing the memory access can be retired but
any writes to the protected physical memory location are ignored and any memory reads return data independent of the
value in the protected physical memory location to avoid violating memory isolation.

Note: Secure systems will typically ensure that some agent is notified when an illegal access is attempted, even when an
access-fault exception cannot be raised on the hart context.

Note: We cannot require that reads that fail permissions checks but that do not raise access-fault exceptions return a specific
value (e.g, zero) to the hart as this is incompatible with some cache-coherence protocols, which may require cache- resident
data be modifiable even when the underlying physical memory locations are protected and the bus responses previously
returned zero.
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35.1 Revision History

Rev. Revision Date Revised Section Revised Content
1.0 2022/1/10 N/A
1. Dedicated chapter on synchronizing multiple
MTIMER devices
2. Initial release with MTIMER, MSWI, and SSWI de-
vices

35.2 Introduction

This RISC-V ACLINT specification defines a set of memory mapped devices which provide inter- processor interrupts
(IPI) and timer functionalities for each HART on a multi-HART RISC-V platform. These HART-level IPI and timer
functionalities are required by operating systems, bootloaders and firmwares running on a multi-HART RISC-V platform.

The SiFive Core-Local Interruptor (CLINT) device has been widely adopted in the RISC-V world to provide machine-
level IPT and timer functionalities. Unfortunately, the SiFive CLINT has a unified register map for both IPI and timer
functionalities and it does not provide supervisor-level IPI functionality.

The RISC-V ACLINT specification takes a more modular approach by defining separate memory mapped devices for IPI
and timer functionalities. This modularity allows RISC-V platforms to omit some of the RISC-V ACLINT devices for
when the platform has an alternate mechanism. In addition to modularity, the RISC-V ACLINT specification also defines
a dedicated memory mapped device for supervisor-level IPIs. The ACLINT Devices (page 364) below shows the list of
devices defined by the RISC-V ACLINT specification.

Table 35.2: ACLINT Devices

Name Privilege Level Functionality

MTIMER Machine Fixed-frequency counter and timer events
MSWI Machine Inter-processor(or software) interrupts
SSWI Supervisor Inter-processor(or software) interrupts
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35.2.1 Backward Compatibility With SiFive CLINT

The RISC-V ACLINT specification is defined to be backward compatible with the SiFive CLINT specification. The register
definitions and register offsets of the MTIMER and MSWI devices are compatible with the timer and IPI registers defined
by the SiFive CLINT specification. A SiFive CLINT device on a RISC-V platform can be logically seen as one MSWI
device and one MTIMER devices placed next to each other in the memory address space as shown in Table One Sifive
CLINT device is equivalent to two ACLINT devices (page 365).

Table 35.3: One Sifive CLINT device is equivalent to two ACLINT

devices
SiFive CLINT Offset Range ACLINT Device Functionality
0x0000_0000 - 0x0000_3ftf MSWI Machine-level inter-processor
(or software) interrupts
0x0000_4000 - 0x0000_bftf MTIMER Machine-level fixed-frequency
counter and timer events

35.3 Machine-level Timer Device (MTIMER)

The MTIMER device provides machine-level timer functionality for a set of HARTSs on a RISC-V platform. It has a single
fixed-frequency monotonic time counter (MTIME) register and a time compare register (MTIMECMP) for each HART
connected to the MTIMER device. A MTIMER device not connected to any HART should only have a MTIME register
and no MTIMECMP registers.

On a RISC-V platform with multiple MTIMER devices:
e Each MTIMER device provides machine-level timer functionality for a different (or disjoint) set of

HARTs. A MTIMER device assigns a HART index starting from zero to each HART associated with it. The HART index
assigned to a HART by the MTIMER device may or may not have any relationship with the unique HART identifier (hart
ID) that the RISC-V Privileged Architecture assigns to the HART.

e Two or more MTIMER devices can share the same physical MTIME register while having their own separate
MTIMECMP registers.

e The MTIMECMP registers of a MTIMER device must only compare again the MTIME register of the same
MTIMER device for generating machine-level timer interrupt.

The maximum number of HARTSs supported by a single MTIMER device is 4095 which is equivalent to the maximum
number of MTIMECMP registers.

35.3.1 Register Map

A MTIMER device has two separate base addresses: one for the MTIME register and another for the MTIMECMP registers.
These separate base addresses of a single MTIMER device allows multiple MTIMER devices to share the same physical
MTIME register.

The Table ACLINT MTIMER Time Register Map (page 365) below shows map of the MTIME register whereas the Table
ACLINT MTIMER Compare Register Map (page 365) below shows map of the MTIMECMP registers relative to separate
base addresses.

Table 35.4: ACLINT MTIMER Time Register Map

Offset Width Attr | Name Description
0x0000_0000 8B RW | MTIME Machine-level time counter

Table 35.5: ACLINT MTIMER Compare Register Map

Offsete Width Attr | Name Description
0x0000_0000 8B RW | MTIMECMPO HART index 0 Machine-level time compare
0x0000_0000 8B RW MTIMECMP1 HART index 1 Machine-level time compare

continues on next page
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Table 35.5 — continued from previous page

Offsete Width Attr | Name Description
0x0000_7{t0 8B RwW MTIMECMP4094 HART index 4094 Machine-level time com-
pare

35.3.2 MTIME Register (Offset: 0x00000000)

The MTIME register is a 64-bit read-write register that contains the number of cycles counted based on a fixed reference
frequency.

On MTIMER device reset, the MTIME register is cleared to zero.

35.3.3 MTIMECMP Registers (Offsets: 0x00000000 - 0x00007FFO0)

The MTIMECMP registers are per-HART 64-bit read-write registers. It contains the MTIME register value at which
machine-level timer interrupt is to be triggered for the corresponding HART. The machine-level timer interrupt of a HART
is pending whenever MTIME is greater than or equal to the value in the corresponding MTIMECMP register whereas
the machine-level timer interrupt of a HART is cleared whenever MTIME is less than the value of the corresponding
MTIMECMP register. The machine-level timer interrupt is reflected in the MTIP bit of the mip CSR. On MTIMER device
reset, the MTIMECMP registers are in unknown state.

35.3.4 Synchronizing Multiple MTIME Registers

A RISC-V platform can have multiple HARTs grouped into hierarchical topology groups (such as clusters, nodes, or
sockets) where each topology group has it’'s own MTIMER device. Further, such RISC-V platforms can also allow clock-
gating or powering off for a topology group (including the MTIMER device) at runtime.

On a RISC-V platform with multiple MTIMER devices residing on the same die, each device must satisfy the RISC-V
architectural requirement that all the MTIME registers with respect to each other, and all the per-HART time CSRs with
respect to each other, are synchronized to within one MTIME tick period. For example, if the MTIME tick period is 10ns,
then the MTIME registers, and their associated time CSRs, should respectively be synchronized to within 10ns of each
other.

On a RISC-V platform with multiple MTIMER devices on different die, the MTIME registers (and their associated time
CSRs) on different die may be synchronized to only within a specified interval of each other that is larger than the MTIME
tick period. A platform may define a maximum allowed interval. To satisfy the preceding MTIME synchronization re-
quirements:

* All MTIME registers should have the same input clock so as to avoid runtime drift between separate MTIME registers
(and their associated time CSRs)

» Upon system reset, the hardware must initialize and synchronize all MTIME registers to zero
* When a MTIMER device is stopped and started again due to, say, power management actions, the
software should re-synchronize this MTIME register with all other MTIME registers

When software updates one, multiple, or all MTIME registers, it must maintain the preceding synchronization requirements
(through measuring and then taking into account the differing latencies of performing reads or writes to the different
MTIME registers).

As an example, the below RISC-V 64-bit assembly sequence can be used by software to synchronize a MTIME register
with reference to another MTIME register.

Vi
* unsigned long aclint_mtime_sync(unsigned long target_mtime_address,
* unsigned long reference_mtime_address)
*/
.globl aclint_mtime_sync
aclint_mtime_sync:
/* Read target MTIME register in TO® register */

(continues on next page)
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(continued from previous page)

1d t0, (ad)
fence i, 1

/* Read reference MTIME register in T1 register */
1d tl, (al)
fence i, 1

/* Read target MTIME register in T2 register */
1d t2, (ad)
fence i, 1

Vi
* Compute target MTIME adjustment in T3 register
*T3 =T1 - ((TO + t2) / 2)

*/

srli t0, t0, 1

srli t2, t2, 1

add t3, t0, t2

sub t3, tl, t3

/* Update target MTIME register */

1d t4, (a®)
add t4, t4, t3
sd t4, (a®)

/* Return MTIME adjustment value */
add a®, t3, zero
ret

Note: On some RISC-V platforms, the MTIME synchronization sequence (i.e. the aclint_mtime_sync() function above)
will need to be repeated few times until delta between target MTIME register and reference MTIME register is zero (or
very close to zero).

35.4 Machine-level Software Interrupt Device (MSWI)

The MSWI device provides machine-level IPI functionality for a set of HARTs on a RISC-V platform. It has an IPI register
(MSIP) for each HART connected to the MSWI device.

On a RISC-V platform with multiple MSWI devices, each MSWI device provides machine-level IPI functionality for a
different (or disjoint) set of HARTs. A MSWI device assigns a HART index starting from zero to each HART associated
with it. The HART index assigned to a HART by the MSWI device may or may not have any relationship with the unique
HART identifier (hart ID) that the RISC-V Privileged Architecture assigns to the HART.

The maximum number of HARTS supported by a single MSWI device is 4095 which is equivalent to the maximum number
of MSIP registers.
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35.4.1 Register Map

Table 35.6: ACLINT MSWI Device Register Map

Offset Width Attr | Name Description

0x0000_0000 4B RW MSIPO HART index 0 machine-level
IPI register

0x0000_0004 4B RwW MSIP1 HART index 1 machine-level
IPI register

0x0000_3FFC 4B RESERVED Reserved for future use.

35.4.2 MSIP Registers(Offsets: 0x00000000 - 0x00003FF8)

Each MSIP register is a 32-bit wide WARL register where the upper 31 bits are wired to zero. The least significant bit is
reflected in MSIP of the mip CSR. A machine-level software interrupt for a HART is pending or cleared by writing 1 or 0
respectively to the corresponding MSIP register. On MSWI device reset, each MSIP register is cleared to zero.

35.5 Supervisor-level Software Interrupt Device (SSWI)

The SSWI device provides supervisor-level IPI functionality for a set of HARTs on a RISC-V platform. It provides a
register to set an IPI (SETSSIP) for each HART connected to the SSWI device.

On a RISC-V platform with multiple SSWI devices, each SSWI device provides supervisor-level IPI functionality for a
different (or disjoint) set of HARTs. A SSWI device assigns a HART index starting from zero to each HART associated
with it. The HART index assigned to a HART by the SSWI device may or may not have any relationship with the unique
HART identifier (hart ID) that the RISC-V Privileged Architecture assigns to the HART.

The maximum number of HARTSs supported by a single SSWI device is 4095 which is equivalent to the maximum number
of SETSSIP registers.

35.5.1 Register Map

Table 35.7: ACLINT SSWI Device Register Map

Offset Width Attr | Name Description

0x0000_0000 4B RW | SETSSIPO HART index O set supervisor-level
IPI register

0x0000_0004 4B RW | SETSSIP1 HART index 1 set supervisor-level
IPI register

0x0000_3FFC 4B RESERVED Reserved for future use.

35.5.2 SETSSIP Registers (Offsets: 0x00000000 - 0x00003FF8)

Each SETSSIP register is a 32-bit wide WARL register where the upper 31 bits are wired to zero. The least significant bit
of a SETSSIP register always reads 0. Writing O to the least significant bit of a SETSSIP register has no effect whereas
writing 1 to the least significant bit sends an edge-sensitive interrupt signal to the corresponding HART causing the HART
to set SSIP in the mip CSR. Writes to a SETSSIP register are guaranteed to be reflected in SSIP of the corresponding
HART but not necessarily immediately.

Note: The RISC-V Privileged Architecture defines SSIP in mip and sip CSRs as a writeable bit so the M-mode or S-mode
software can directly clear SSIP.
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Appendix

Nuclei RISC-V IP Products: https://www.nucleisys.com/product.php

Nuclei Spec Documentation: https://nucleisys.com/download.php#spec

Nuclei RISCV Tools and Documents: https://nucleisys.com/download.php
Nuclei Prebuilt Toolchain and IDE: https://nucleisys.com/download.php#tools
NMSIS: https://github.com/Nuclei-Software/NMSIS

Nuclei SDK: https://github.com/Nuclei-Software/nuclei-sdk

Nuclei Linux SDK: https://github.com/Nuclei- Software/nuclei-linux-sdk
Nuclei Software Organization in Github: https://github.com/Nuclei-Software/
RISC-V MCU Organization in Github: https://github.com/riscv-mcu/
RISC-V MCU Community Website: https://www.rvmcu.com/

Nuclei riscv-openocd: https://github.com/riscv-mcu/riscv-openocd

Nuclei riscv-gnu-toolchain: https://github.com/riscv-mcu/riscv-gnu-toolchain
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