

 Copyright © 2018–2020 Nuclei System Technology
All rights reserved.

 Nuclei™ N300 Series

Processor Core

Databook

Copyright Notice

Copyright © 2018–2020 Nuclei System Technology. All rights reserved.

Nuclei™ are trademarks owned by Nuclei System Technology. All other trademarks used herein

are the property of their respective owners.

The product described herein is subject to continuous development and improvement;

information herein is given by Nuclei in good faith but without warranties.

This document is intended only to assist the reader in the use of the product. Nuclei System

Technology shall not be liable for any loss or damage arising from the use of any information in

this document, or any incorrect use of the product.

Contact Information

Should you have any problems with the information contained herein or any suggestions, please

contact Nuclei System Technology by email support@nucleisys.com, or visit “Nuclei User Center”

website http://user.nucleisys.com for supports or online discussion.

mailto:support@nucleisys.com
http://user.nucleisys.com/

 Page 1

Revision History

Rev. Revision Date Revised Section Revised Content

1.0 2020/2/5 N/A 1. First version as the full English

 Page 2

Table of Contents

COPYRIGHT NOTICE .. 0

CONTACT INFORMATION .. 0

REVISION HISTORY ... 1

TABLE OF CONTENTS .. 2

LIST OF TABLES ... 4

LIST OF FIGURES .. 5

1. OVERVIEW .. 6

1.1. FEATURE LIST ... 6

1.2. SUPPORTED INSTRUCTION SET AND PRIVILEGED ARCHITECTURE .. 8

1.3. TOP DIAGRAM ... 10

1.4. DIFFERENT CORES OF N300 SERIES .. 12

2. FUNCTIONAL INTRODUCTIONS ... 14

2.1. CLOCK DOMAINS ... 14

2.2. POWER DOMAINS .. 15

2.3. CORE INTERFACES .. 15

2.4. MEMORY RESOURCES ... 15

2.5. PRIVATE PERIPHERALS ... 16

2.6. ADDRESS SPACES OF INTERFACES AND PRIVATE PERIPHERALS .. 17

2.7. DEBUG SUPPORT ... 18

2.8. INTERRUPT AND EXCEPTION MECHANISM ... 18

2.9. NMI MECHANISM ... 19

2.10. CONTROL AND STATUS REGISTERS (CSRS) .. 19

2.11. PERFORMANCE MONITOR ... 19

2.12. TIMER UNIT .. 20

2.13. LOW-POWER MECHANISM ... 21

2.13.1. Clock Control of Entering Sleep Modes .. 21

2.13.2. Clock Control of Exiting Sleep Mode .. 22

2.14. PHYSICAL MEMORY PROTECTION ... 23

2.15. FPU FEATURE ... 23

2.16. DSP FEATURE ... 23

2.17. NICE FEATURE ... 24

2.18. TEE FEATURE ... 24

3. CORE INTERFACES ... 25

3.1. CLOCK AND RESET INTERFACE ... 25

 Page 3

3.2. 4-WIRE AND 2-WIRE JTAG DEBUG INTERFACE ... 25

3.3. INTERRUPT INTERFACE ... 28

3.4. BUS INTERFACES ... 29

3.4.1. ILM and DLM Interface ... 29

3.4.2. MEM Interface ... 32

3.4.3. PPI Interface .. 33

3.4.4. FIO Interface .. 33

3.5. NICE INTERFACE .. 34

3.6. TRACE INTERFACE... 34

3.7. I-CACHE SRAM INTERFACE ... 35

3.8. OTHER FUNCTIONAL INTERFACE .. 36

4. CONFIGURABLE OPTIONS .. 39

 Page 4

List of Tables

TABLE 1-1 CONFIGURABLE FEATURES OF DIFFERENT CORES .. 12

TABLE 2-1 ADDRESS SPACES OF THE CORE ... 17

TABLE 3-1 CLOCK AND RESET SIGNALS ... 25

TABLE 3-2 JTAG SIGNALS ... 26

TABLE 3-3 INTERRUPT AND NMI SIGNALS .. 28

TABLE 3-4 ILM AHB-LITE SIGNALS ... 29

TABLE 3-5 ILM SRAM SIGNALS .. 30

TABLE 3-6 DLM AHB-LITE SIGNALS .. 31

TABLE 3-7 DLM SRAM SIGNALS .. 31

TABLE 3-8 MEM SIGNALS ... 32

TABLE 3-9 PPI SIGNALS ... 33

TABLE 3-10 FIO SIGNALS .. 34

TABLE 3-11 TRACE INTERFACE SIGNALS .. 34

TABLE 3-12 I-CACHE SRAM INTERFACE .. 35

TABLE 3-13 OTHER INTERFACE SIGNALS ... 36

TABLE 4-1 THE CONFIGURABLE OPTION OF N300 SERIES .. 39

 Page 5

List of Figures

FIGURE 1-1 THE TOP DIAGRAM OF N300 SERIES CORE ... 11

FIGURE 2-1 CLOCK DOMAINS OF THE N300 SERIES CORE ... 14

FIGURE 3-1 THE EXAMPLE OF JTAG IO PADS ... 27

FIGURE 3-2 THE IO PAD WITH CONTROLLABLE PULL-UP AND PULL-DOWN ... 28

FIGURE 3-3 MTIME_TOGGLE_A SIGNAL GENERATION .. 38

 Page 6

1. Overview

The Nuclei N300 Series Processor Core, or N300 Series Core for short，is a commercial RISC-V

Processor Core Series designed by Nuclei System Technology for MCU, IoT or other low-power

applications. The N300 Series is a competitive rival to ARM Cortex-M3/M4/M4F/M33

Processor Cores.

1.1. Feature List

The N300 Series have the following features:

◼ CPU Core

⚫ 3-pipeline stages , using state-of-the-art processor micro-architecture to deliver the

best-of-class performance efficiency and lowest cost.

⚫ Support dynamic branch predictor.

⚫ Configurable instruction prefetch logic, which can prefetch subsequent two

instructions to hide the instruction memory access latency.

◼ Supported Instruction Set Architecture (ISA)

⚫ The N300 Series is a 32-bit RISC-V Processor Core Series, supporting the

combination of RV32I/M/A/F/D/C/P instruction extensions.

⚫ Configurable misaligned memory access hardware support (Load/Store

instructions).

◼ Supported Privileged Modes

⚫ Support Machine Mode, Supervisor Mode (configurable) and User Mode

(configurable).

◼ Bus Interfaces

⚫ Support 32-bit wide standard AHB-Lite system bus interface for accessing system

instruction and data.

⚫ Support 32-bit wide Instruction Local Memory (ILM) bus interface (configurable

 Page 7

with standard AHB-Lite or SRAM interface protocol) for accessing private

instruction local memory.

⚫ Support 32-bit wide Data Local Memory (DLM) bus interface (configurable with

standard AHB-Lite or SRAM interface protocol) for accessing private data local

memory.

⚫ Support 32-bit wide Private Peripheral Interface (PPI) bus interface (with standard

APB interface protocol) for accessing private peripherals.

⚫ Support 32-bit wide Fast-IO Interface (FIO) bus interface (with simple zero-cycle

interface) for accessing private fast peripherals, e.g., GPIO for fast IO manipulation.

◼ Low-Power Management

⚫ Support WFI (Wait For Interrupt) and WFE (Wait For Event) scheme to enter sleep

mode.

⚫ Support two-level sleep modes: shallow sleep mode, and deep sleep mode.

◼ Core-Private Timer Unit (TIMER)

⚫ 64-bits wide real-time counter.

⚫ Support the generation of the timer interrupt defined by the RISC-V standard.

⚫ Support the generation of the precise periodic timer interrupt (can be used as

System Tick) with auto clear-to-zero mode.

⚫ Support the generation of software interrupt defined by the RISC-V standard.

◼ Enhanced Core Level Interrupt Controller (ECLIC)

⚫ Support the RISC-V architecturally defined software, timer and external interrupts.

⚫ Support configurable number of external interrupt sources.

⚫ Support configurable number of interrupt levels and priorities, and support

software dynamically programmable division of interrupt levels and priorities

values.

⚫ Support interrupts preemption based on interrupt levels.

⚫ Support vectored interrupt processing mode for extremely fast interrupt response

(6 cycles).

⚫ Support fast interrupts tail-chaining mechanism.

 Page 8

◼ Support NMI (Non-Maskable Interrupt)

◼ Memory Protection

⚫ Support configurable Physical Memory Protection (PMP) to protect the memory.

◼ Security with Trust Execution Environment

⚫ Support configurable Trust Execution Environment (TEE) feature.

◼ Support Instructions Extended by User

⚫ Support Nuclei Instruction Co-unit Extension (NICE) scheme to support user to

extend custom instructions according to their applications.

◼ Support Instruction Cache (I-Cache)

⚫ The Cache size is configurable.

⚫ 2-way associative structure.

⚫ Cache Line Size is 32 Bytes.

⚫ Support configurable Scratchpad mode.

◼ Debugging System

⚫ Support standard 4-wire or 2-wire JTAG interface.

⚫ Support standard RISC-V debug specification (v0.13).

⚫ Support configurable number of Hardware Breakpoints.

⚫ Support mature interactive debugging software/hardware tools, such as GDB,

OpenOCD, Lauterbach TRACE32, Segger J-Link, IAR, etc.

◼ Software Development Tools

⚫ The N300 Series support the RISC-V standard compilation toolchain and

Integrated Development Environment (IDE) on Linux/Windows systems, such as

GCC, MCU-Eclipse, Nuclei-Studio, IAR, etc.

1.2. Supported Instruction Set and Privileged Architecture

The N300 Series is following the Nuclei RISC-V Instruction Set and Privileged Architecture

Specification (Nuclei_RISCV_ISA_Spec), user can easily get the specification from “Nuclei User

 Page 9

Center” website http://user.nucleisys.com.

http://user.nucleisys.com/

 Page 10

1.3. Top Diagram

The top diagram of N300 Series is as depicted in Figure 1-1, the key points of which are:

◼ Core Wrapper is the top module of the Core, the sub-modules of it are:

⚫ Core: The core part.

⚫ Reset Sync: The module to sync external async reset signal to synced reset with

“Asynchronously assert and synchronously de-assert” style.

⚫ DEBUG: The module to handle the debug functionalities.

◼ uCore is under Core hierarchy, it is the main part of Core.

◼ Besides the uCore, there are several other sub-modules:

⚫ LM Ctrl: The control module for ILM and DLM.

⚫ ECLIC: The private interrupt controller.

⚫ TIMER: The private timer unit.

⚫ BIU: The bus interface unit.

⚫ Misc Ctrl: Other miscellaneous modules.

 Page 11

Figure 1-1 The top diagram of N300 Series Core

 Page 12

1.4. Different Cores of N300 Series

The N300 is a series of Cores with different configuration templates. Different Cores have

different configurable features, as briefly summarized in Table 1-1.

Table 1-1 Configurable features of different Cores

N305 N307 N308

Baseline Instruction Set IMAC IMAC IMAC

Hardware Multiplier YES

(Single-Cycle)
YES

(Single-Cycle)
YES

(Single-Cycle)

Hardware Divider YES YES YES

A (Atomic) Instruction Extension
Configurable Configurable Configurable

Unaligned Load/Store Hardware Support
Configurable Configurable Configurable

Low Power Features YES YES YES

Interrupts Number
Configurable Configurable Configurable

NMI YES YES YES

ILM and DLM Interface
Configurable Configurable Configurable

PPI Interface
Configurable Configurable Configurable

Fast-IO Interface
Configurable Configurable Configurable

Instruction Cache (I-Cache)
Configurable Configurable Configurable

Scratchpad Mode for I-Cache
Configurable Configurable Configurable

User Mode and PMP
Configurable Configurable Configurable

Debugging System
Configurable Configurable Configurable

User Instruction Extendibility (NICE)
Configurable Configurable Configurable

Timing Enhancing Options
Configurable Configurable Configurable

Performance Enhancing Options
Configurable Configurable Configurable

Single-Precision Floating point Unit
NO Configurable Configurable

Double-Precision Floating point Unit
NO Configurable Configurable

Packed-SIMD DSP
NO Configurable Configurable

 Page 13

TEE Support
NO NO Configurable

 Page 14

2. Functional Introductions

2.1. Clock Domains

Figure 2-1 Clock domains of the N300 Series Core

The clock domains of the N300 Series Core are shown in Figure 2-1. The entire Core is divided

into three asynchronous clock domains:

◼ The main clock domain (for the core_clk and core_clk_aon), which drive most of the
functional logics of the Core. Note:

⚫ core_clk and core_clk_aon have the same frequency and same phases as they are

supposed to be clocks from the same clock source.

⚫ core_clk is the main working clock that drives the main domain inside the Core,

core_clk is supposed to be clock-gated at the SoC level during the sleep mode.

⚫ core_clk_aon is an always-on clock that drives the always-on logic in the Core,

including the ECLIC, TIMER, DEBUG, etc.

◼ The JTAG_CLK clock domain (for the jtag_TCK), which drives the JTAG logics of
DEBUG unit.

◼ The JTAG_TMS clock domain (for the jtag_TMS), since the jtag_TMS will be used as

clock when switching between 4-wire and 2-wire JTAG modes, hence the jtag_TMS is

 Page 15

also a clock driving very few JTAG logics of DEBUG unit.

The above three clock domains are asynchronous with each other, so asynchronous cross-clock

domain processing has been implemented in the Core.

2.2. Power Domains

There is no power domains specified inside N300 Series Core. Per different applications, the SoC

integrator can choose to divide the power domains according to the convenience of the

hierarchies inside the Core.

2.3. Core Interfaces

Please refer to Chapter 3 for the details of Core interfaces.

2.4. Memory Resources

N300 Series Core supports the following memory resources:

◼ ILM:

⚫ The Core supports Instruction Local Memory (ILM) access via an independent

AHB-Lite or SRAM interface if the ILM interface is configured.

⚫ The address space of the ILM is configurable. Please see Section 2.6 for details.

⚫ The ILM is implemented by the SoC integrator and can generally be an SRAM or

Flash for storing instructions. If the AHB-Lite interface is implemented, to achieve

best performance, the interface should return response at the next cycle after

receiving the read request.

◼ DLM:

⚫ The Core supports Data Local Memory (DLM) access via an independent AHB-Lite

or SRAM interface if the DLM interface is configured.

⚫ The address space of the DLM is configurable. Please see Section 2.6 for details.

 Page 16

⚫ The DLM is implemented by the SoC integrator and can generally be an SRAM for

storing data. If the AHB-Lite interface is implemented, to achieve best performance,

the interface should return response at the next cycle after receiving the read/write

request.

◼ I-Cache:

⚫ The Core supports I-Cache (Instruction Cache) to cache the instruction fetched

from MEM interface. Note: the instruction fetched from ILM interface will not be

cached, i.e., if the instruction fetch address fall into ILM address space, it will

directly access ILM interface with the I-Cache bypassed.

⚫ I-Cache is 2-ways associative structure, with Line Size as 32 Bytes. The size of

I-Cache is configurable. Please refer to Chapter 4 for more details of configurations.

⚫ If the core is not configured with ILM, just configured with I-Cache, then the

I-Cache can be configured to support the Scratchpad Mode.

⚫ When under Scratchpad Mode, the Data SRAM of I-Cache will be reused and

downgraded to memory mapped SRAM which can be accessed by instruction fetch

and data access, like ILM and DLM, but called as Scratchpad here.

⚫ When under Scratchpad Mode, the base address of Scratchpad is configurable.

Please refer to Chapter 4 for more details of configurations.

⚫ This Scratchpad Mode is controlled by CSR register mcache_ctl, please refer to

“Nuclei_RISCV_ISA_Spec” for more details, user can easily get the specification

from “Nuclei User Center” website http://user.nucleisys.com.

2.5. Private Peripherals

As shown in Figure 1-1, under the Core hierarchy, in addition to the uCore, the following private

peripherals are included:

◼ DEBUG: handle the JTAG interface and related debugging features.

◼ ECLIC: the Enhanced Core-Level Interrupt Controller.

◼ TIMER: the private TIMER unit.

The above peripherals are private to the Core and are accessed using memory mapped address.

http://user.nucleisys.com/

 Page 17

See Section 2.6 for the details of their specific address space allocation.

2.6. Address Spaces of Interfaces and Private Peripherals

There are quite several interfaces and private peripherals for the Core, the address spaces of

them are shown in Table 2-1.

Table 2-1 Address Spaces of the Core

Unit Base Address Offset Description

DEBUG Configurable 0x000~ 0xFFF ◼ Address space of DEBUG unit.

◼ Note: DEBUG is private inside the core.
And DEBUG is used for debugging
functionality. The regular application
software should not access this space.

ECLIC Configurable 0x0000 ~ 0xFFFF ◼ Address space of ECLIC unit.

◼ Note: ECLIC is private inside the core.
TIMER Configurable 0x000 ~ 0xFFF ◼ Address space of TIMER unit.

◼ Note: TIMER is private inside the core.
ILM Configurable Depends on the

configuration of ILM
address space

◼ Address space of ILM interface.

DLM Configurable Depends on the
configuration of
DLM address space

◼ Address space of DLM interface.

FIO Configurable Depends on the
configuration of FIO
address space

◼ Address space of FIO interface.

PPI Configurable Depends on the
configuration of PPI
address space

◼ Address space of PPI interface.

MEM N/A N/A

◼ The address space other than the above
mentioned spaces are all to MEM
(System Memory) interface.

Note: please refer to Chapter 4 for more details of configurations.

There are several key points:

◼ The Core’s instruction fetches will not go to DLM, ECLIC, TIMER, FIO, or PPI anyway.

◼ Since the Core have instruction fetch and data access paths independent inside the
Core, the address space of ILM and DLM can be overlapped.

⚫ If the Core has not been configured with “N300_CFG _LSU_ACCESS_ILM”，then

 Page 18

the data access cannot access ILM interface anyway.

⚫ If the Core has been configured with “N300_CFG _LSU_ACCESS_ILM”，then the

data access can access ILM interface if the data access address fall into the ILM

address space. Note: if the data access address fall into both ILM and DLM address

spaces (since address spaces of ILM and DLM could be overlapped), then the data

access still go to ILM interface.

◼ The total address space of “ILM and DLM” should not overlap with the total address
space of “DEBUG, TIMER, ECLIC, FIO and PPI”, otherwise it is configuration error.

◼ The address spaces of DEBUG, TIMER, ECLIC, FIO, and PPI should not overlap;
otherwise it is the configuration error.

2.7. Debug Support

N300 Series Core supports standard 4-wire or 2-wire JTAG interface, standard RISC-V debug

specification (v0.13), configurable number of Hardware Breakpoints, and mature interactive

debugging software/hardware tools, such as GDB, OpenOCD, Lauterbach TRACE32, Segger

J-Link, IAR, etc.

N300 Series Core defines an input signal i_dbg_stop, which can be controlled by the SoC level to

disable the debug functionality or not:

◼ If the value of the i_dbg_stop signal is 0, the debug functionality of the Core is
working properly.

◼ If the value of the i_dbg_stop signal is 1, the debug functionality of the Core is off, and
the external Debug Hardware Probe cannot debug the Core through JTAG interface
anymore.

2.8. Interrupt and Exception Mechanism

For a detailed description of the Core's interrupt and exception mechanisms, please refer to

Nuclei ISA specification (Nuclei_RISCV_ISA_Spec), user can easily get the specification from

“Nuclei User Center” website http://user.nucleisys.com.

http://user.nucleisys.com/

 Page 19

2.9. NMI Mechanism

NMI (Non-Maskable Interrupt) is a special input signal of the Core, often used to indicate

system-level emergency errors (such as external hardware failures, etc.). After encountering the

NMI, the Core should abort execution of the current program immediately and process the NMI

handler instead. For a detailed description of the NMI mechanism of the N300 Series Core,

please refer to Nuclei ISA specification (Nuclei_RISCV_ISA_Spec), user can easily get the

specification from “Nuclei User Center” website http://user.nucleisys.com.

2.10. Control and Status Registers (CSRs)

Some control and status registers (CSRs) are defined in the RISC-V architecture to configure or

record the status of execution. CSR registers are registers internal to the Core that uses their

private 12-bit encoding space to access.

For a detailed description of the Core's CSRs, please refer to Nuclei ISA specification

(Nuclei_RISCV_ISA_Spec), user can easily get the specification from “Nuclei User Center”

website http://user.nucleisys.com.

2.11. Performance Monitor

The RISC-V architecture defines the following two performance counters:

◼ Cycle Counter:

⚫ A 64-bit wide clock cycle counter that reflects how many clock cycles the Core has

executed. This counter will continuously increment as long as the Core’s

core_clk_aon is ON.

⚫ The CSR mcycle reflect the lower 32 bits of the counter, and the CSR mcycleh reflect

the upper 32 bits of the counter. Please refer to Nuclei ISA specification

(Nuclei_RISCV_ISA_Spec) for the details; user can easily get the specification from

“Nuclei User Center” website http://user.nucleisys.com.

http://user.nucleisys.com/
http://user.nucleisys.com/
http://user.nucleisys.com/

 Page 20

◼ Instruction Retirement Counter:

⚫ The RISC-V architecture defines a 64-bit wide instruction completion counter that

reflects how many instructions the Core successfully executed. This counter will

increment if the processor executes an instruction successfully.

⚫ The CSR minstret reflect the lower 32 bits of the counter, and the CSR minstreth

reflect the upper 32 bits of the counter. Please refer to Nuclei ISA specification

(Nuclei_RISCV_ISA_Spec) for more details; user can easily get the specification

from “Nuclei User Center” website http://user.nucleisys.com.

The Cycle Counter and the Instruction Retirement Counter are typically used to measure

performance.

By default, the counter is zero value after a reset and then increments itself continuously. But in

Nuclei N300 Series Core, considering the counter increases the power consumption, there is an

extra bit in the customized CSR mcountinhibit that can pause the counter to save power when

users don’t need to monitor the performance through the counter. Please refer to Nuclei ISA

specification (Nuclei_RISCV_ISA_Spec) for more details; user can easily get the specification

from “Nuclei User Center” website http://user.nucleisys.com.

2.12. TIMER Unit

The RISC-V architecture defines a 64-bit Timer Counter which is clocked by the system’s

low-speed Real Time Clock frequency. The value of this timer is reflected in the register mtime.

The RISC-V architecture also defines a 64-bit mtimecmp register that used as a comparison

value for the timer. A timer interrupt is generated if the value of mtime is greater than or equal

to the value of mtimecmp.

Note: The RISC-V architecture does not define the mtime and mtimecmp registers as CSR

registers, but rather as Memory Address Mapped system registers. The specific memory mapped

address is not defined by the RISC-V architecture, so it is defined by the implementation. In the

N300 Series Core, mtime and mtimecmp are both implemented in the TIMER Unit.

http://user.nucleisys.com/
http://user.nucleisys.com/

 Page 21

Besides, the TIMER Unit of N300 Series Core can also generate the periodic timer interrupt

(normally as System Tick) and the software interrupt, please refer to Nuclei ISA specification

(Nuclei_RISCV_ISA_Spec) for more details; user can easily get the specification from “Nuclei

User Center” website http://user.nucleisys.com.

2.13. Low-Power Mechanism

The low-power mechanism of the N300 Series Core is as below:

◼ The clocks of the main units in the Core are automatically gated off when they are in

idle state to reduce static power consumption.

◼ The Core supports different sleep modes (shallow sleep mode or deep sleep mode)

through WFI (Wait for Interrupt) and WFE (Wait for Event) mechanisms to achieve

lower dynamic and static power consumption. For more details about “Wait for

Interrupt” and “Wait for Event” mechanism, please refer to Nuclei ISA specification

(Nuclei_RISCV_ISA_Spec) for more details; user can easily get the specification from

“Nuclei User Center” website http://user.nucleisys.com.

2.13.1. Clock Control of Entering Sleep Modes

The key points of the clock control (reference scheme) of the core entering sleep mode are as the

followings:

◼ As shown in Figure 2-1, when the WFI/WFE is successfully executed, the output signal

core_wfi_mode of the Core is asserted, indicating that the Core has entered to the

sleep mode; at the SoC level, the signal core_wfi_mode should be used to control the

external gate logic to disable the core_clk.

◼ If the Core entered the deep sleep mode (core_sleep_value is 1), then SoC can decide

whether to disable the always on clock core_clk_aon according to its actual scenario.

http://user.nucleisys.com/
http://user.nucleisys.com/

 Page 22

2.13.2. Clock Control of Exiting Sleep Mode

The Core can be waked up by interrupt, event, or NMI. Please refer to Nuclei ISA specification

(Nuclei_RISCV_ISA_Spec) for more details; user can easily get the specification from “Nuclei

User Center” website http://user.nucleisys.com.

The key points of the clock control of the Core exiting the sleep mode are as the followings:

◼ The output signal core_wfi_mode will be de-asserted immediately after the core being

waked up. Assuming the SoC control the gate of core_clk using the signal

core_wfi_mode, the working clock of core, core_clk will be enabled as soon as the

signal core_wfi_mode is de-asserted.

◼ For the case that the core is waiting for an interrupt to wake up, because the Core can

only handle the interrupt processed and distributed by ECLIC unit, then only the

interrupt, which is enabled and has greater interrupt level than the interrupt threshold

level, can wake up the core. Furthermore, whether enable the core_clk_aon inside the

core needs to be handled carefully:

⚫ As mentioned in Section 2.1, the TIMER unit is clocked by core_clk_aon, so if the

SoC system has disabled the always-on clock core_clk_aon, the TIMER unit cannot

generate timer or software interrupt because it has no working clock, and the core

cannot be woken up.

⚫ As mentioned in Section 2.1, the ECLIC unit is clocked by core_clk_aon, so if the

SoC system has disabled the always-on clock core_clk_aon, then the external

interrupt signal must kept asserted until the SoC enable the core_clk_aon again.

Otherwise, the ECLIC unit cannot sample the external interrupt signal because it

has no working clock, and the core cannot be woken up.

◼ For the case that the core is waiting for an event or NMI to wake up, if the core

sampled (by the core_clk_aon) the input signal rx_evt (indicate there is one event) or

the input signal nmi (indicate there is one NMI), the core will be woken up.

Furthermore, whether enable the core_clk_aon inside the core needs to be handled

carefully:

http://user.nucleisys.com/

 Page 23

⚫ If the SoC system has disabled the always-on clock core_clk_aon, then the input

signal rx_evt or nmi must keep as 1 until the SoC turns on the clock core_clk_aon.

Otherwise, the core cannot sample the rx_evt or nmi as the sample logic has no

working clock, and the core will not wake up.

2.14. Physical Memory Protection

Since the N300 Series Core is low-power core designed for microcontrollers, it does not support

the Memory Management Unit, so all the address access operations are using physical addresses.

In order to perform memory access protection and isolation according to memory physical

address and execution privilege mode, the RISC-V standard architecture defines a physical

memory protection mechanism: Physical Memory Protection (PMP).

N300 Series Core can be configured to support the PMP feature. About the programming mode

of PMP, please refer to Nuclei ISA specification (Nuclei_RISCV_ISA_Spec), user can easily get

the specification from “Nuclei User Center” website http://user.nucleisys.com.

2.15. FPU Feature

N300 Series Core can be configured to support single-precision (F extension) or

double-precision (D extension) floating point instructions. For the details of F/D extension,

please refer to Nuclei RISC-V Instruction Set and Privileged Architecture Specification

(Nuclei_RISCV_ISA_Spec), user can easily get the specification from “Nuclei User Center”

website http://user.nucleisys.com.

2.16. DSP Feature

N300 Series Core can be configured to support Packed-SIMD DSP instructions, please refer to

another document <Nuclei_DSP_QuickStart> for the details of DSP instructions. User can

easily get the copy from “Nuclei User Center” website http://user.nucleisys.com.

http://user.nucleisys.com/
http://user.nucleisys.com/
http://user.nucleisys.com/

 Page 24

2.17. NICE Feature

N300 Series Core can be configured to support user to add their custom instructions with NICE

(Nuclei Instruction Co-unit Extension) interface. Please refer to another document

<Nuclei_NICE_Extension> for the details. User can easily get the copy from “Nuclei User

Center” website http://user.nucleisys.com.

2.18. TEE Feature

N300 Series Core can be configured to support the TEE (Trust Execution Environment) feature.

About the details of TEE, please refer to another document <Nuclei_TEE_Architecture>. User

can easily get the copy from “Nuclei User Center” website http://user.nucleisys.com.

http://user.nucleisys.com/
http://user.nucleisys.com/

 Page 25

3. Core Interfaces

3.1. Clock and Reset Interface

The clock and reset signals of N300 Series Core are as depicted Table 3-1.

Table 3-1 Clock and Reset Signals

Signal Name Direction Width Description

core_clk_aon Input 1 ◼ This clock is to drive the Always-On Logics of the
Core, please refer to Section 2.1 for more details.

core_clk Input 1 ◼ This clock is to drive the Main Logics of the Core,
please refer to Section 2.1 for more details.

por_reset_n Input 1

◼ Power on Reset. This signal is active low signal. This
reset will reset the entire N300 Core including the
JTAG logics.

◼ Note: this reset signal will be synced inside N300
Core to make it as “asynchronously asserted and
synchronously de-asserted” style.

core_reset_n Input 1

◼ System Reset. This signal is active low signal. This
reset will reset the N300 Core except the JTAG logics.

◼ Note: this reset signal will be synced inside N300
Core to make it as “asynchronously asserted and
synchronously de-asserted” style.

reset_bypass

Input 1

◼ If the reset_bypass signal is high, then the internal
generated reset will be bypassed, to allow DFT
(Design For Test) rules.

◼ Note: if the reset_bypass is high, the core_reset_n
will be bypassed and disabled, only the por_reset_n
will really take effects.

clkgate_bypass Input 1 ◼ If the clkgate_bypass is high, the clock gater will be
bypassed, to allow DFT (Design For Test) rules.

3.2. 4-wire and 2-wire JTAG Debug Interface

N300 Series Core can be configured to support the standard 4-wire JTAG and 2-wire JTAG

interface (two modes can be switched dynamically); it is compliant to IEEE 1149.7 T4 Wide

protocol. For the 2-wire mode, the Oscan0 and Oscan1 mode are supported.

The JTAG signals of N300 Series Core are as depicted Table 3-2.

 Page 26

Table 3-2 JTAG Signals

Signal Name Direction Width Description

jtag_TCK Input 1
◼ JTAG TCK signal.

◼ Note: this signal needs to be constrained as Clock
(asynchronous to the Core’s main clock).

jtag_TMS_in Input 1

◼ 4-wire JTAG TMS signal

◼ Or 2-wire JTAG TMS input signal from IO PAD.

◼ Note: if support 2-wire mode, this signal need to be
constrained as Clock (asynchronous to the Core’s main
clock and jtag_TCK).

jtag_TMS_out Output 1
◼ 2-wire JTAG TMS output signal to IO PAD.

◼ Note: if the 2-wire mode does not need to be supported,
then this signal is unused.

jtag_BK_TMS Output 1

◼ 2-wire JTAG TMS bus keep control signal to IO PAD.
The functionality of this signal will be detailed at late
parts.

◼ Note: if the 2-wire mode does not need to be supported,
then this signal is unused.

jtag_DRV_TMS Output 1

◼ 2-wire JTAG TMS output enable signal to IO PAD. When
the TMS is outputting, this DRV_TMS signal will be high
to enable IO PAD as output.

◼ Note: if the 2-wire mode does not need to be supported,
then this signal is unused.

jtag_TDI Input 1 ◼ 4-wire JTAG TDI signal.

jtag_TDO Output 1 ◼ 4-wire JTAG TDO signal.

jtag_DRV_TDO Output 1
◼ 4-wire JTAG TDO output enable signal to IO PAD. When

the TMO is outputting, this DRV_TMO signal will be
high to enable IO PAD as output.

jtag_dwen Output 1 ◼ Indicate it is in 2-wire mode.

◼ Note: if the SoC level is chaining several JTAG TAPs with
Core’s JTAG, then when Core’s JTAG TAP is in 2-wire
mode, it may break other standard 4-wire JTAG TAPs on
the chain to mis-function. This jtag_dwen signal can be
used to disable other standard 4-wire JTAG TAPs on the
chain to make sure they functioned correctly.

The example JTAG IO PADs are depicted as in Figure 3-1. Note:

◼ The “Optional” part (TDI and TDO) can just not be implemented. If not implemented,
the SoC will just support only 2-wire JTAG mode, i.e., IEEE 1149.7 T4 Narrow
standard.

◼ In the IEEE 1149.7 specification, the 2-wire JTAG require JTAG_TMS_PAD to have
the “Bus Keep” functionality inside the SoC Chip.

⚫ Nuclei designed “HBird Debugger Kit” will have the “Bus Keeper Circuit” included,

so the SoC Chip does not need to implement the “Bus Keep” functionality inside it,

 Page 27

i.e., JTAG_TMS_PAD no need to have “Bus Keep” feature.

⚫ But other third part Debugger Hardware Probes may not have the “Bus Keeper

Circuit” included, hence, it is still recommended to have JTAG_TMS_PAD

implemented with “Bus Keep” feature.

◼ If user SoC Chip’s IO PAD does not have “Bus Keep” feature, it can be implemented
with “IO PAD with controllable pull-up and pull-down of” to achieve it, as depicted in
Figure 3-2.

⚫ User can manipulate the pull-up and pull-down control signal as below logic codes:

// If the Bus Keep is not enabled, the IO Pad will be pull-up by default.

// If the Bus Keep is enabled, then the pull-up enable is driven from PAD_IN, and

pull-down enable is driven from ~PAD_IN，to make the IO PAD weakly keep the value

of PAD_IN.

assign RPUEN = bk_en? PAD_IN : 1’b1;

assign RPDEN = bk_en? ~PAD_IN : 1’b0;

// Note: the above bk_en control signal may come from jtag_BK_TMS directly，or combined

with other software programmable register bit. For example,

 bk_en = jtag_BK_TMS & ctrl_bk_enable.

// ctrl_bk_enable is from SoC level programmable register bit, such that user can use

software to disable “Bus Keep” functionality.

Figure 3-1 The example of JTAG IO PADs

 Page 28

Figure 3-2 The IO PAD with controllable pull-up and pull-down

3.3. Interrupt Interface

The interrupt signals of N300 Series Core are as depicted Table 3-3

Table 3-3 Interrupt and NMI signals

Signal Name Direction Width Description

nmi Input 1

◼ NMI (Non-Maskable Interrupt) input.

◼ Note:
⚫ nmi_irq signal will not be synced inside the

Core, so this signal need to be synced at the
SoC level if it is from different clock domain at
SoC.

⚫ Please refer to Section 2.9 for the details of
NMI.

clic_irq Input Configurable

◼ External Interrupt input, each bit of which can be
used to connect an interrupt source.

◼ Note:
⚫ clic_irq signal will not be synced inside the

Core, so these signals need to be synced at the
SoC level if it is from different clock domain at
SoC.

⚫ Please refer to Section 2.9 for the details of
interrupt.

 Page 29

3.4. Bus Interfaces

N300 Series Core support several bus interfaces, including:

◼ (Configurable) ILM Master Interface.

◼ (Configurable) DLM Master Interface.

◼ (Configurable) PPI Interface.

◼ (Configurable) FIO Interface.

◼ MEM (System Memory) Interface.

3.4.1. ILM and DLM Interface

ILM interface is used to access Instruction Local Memory, and DLM interface is used to access

Data Local Memory. Both the ILM and DLM interface can be configured as AHB-Lite or SRAM

protocol interface. If configured as AHB-Lite, it should be noted:

◼ If the DLM AHB-Lite and ILM AHB-Lite interfaces need to be arbitrated at SoC level,
the SoC need to make sure DLM interface have the higher priority than ILM interface.

◼ N300 Series provide a configurable option “N300_CFG_ILM_DLM_EXCLUSIVE”, if
this option is configured, the Core will guarantee the DLM AHB-Lite and ILM AHB-Lite
interfaces will not issue transactions at the same cycle. This configuration can easy the
SoC to just use the simple MUX to arbitrate the ILM and DLM AHB-Lite interfaces,
without worrying the priority.

3.4.1.1 ILM Master Interface

ILM interface can be configured as AHB-Lite or SRAM protocol.

◼ If it is configured as AHB-Lite, the signal list is as shown in Table 3-4.

◼ If it is configured as SRAM, the signal list is as shown in Table 3-5.

Table 3-4 ILM AHB-Lite signals

Signal Name Direction Width Description

ilm_htrans Output 2

◼ AHB-Lite protocol’s HTRANS signal.

◼ Note: in ILM interface, only the IDLE and
NONSEQUENTIAL transactions will be
issued.

 Page 30

ilm_haddr Output
Depends on
configuration

◼ AHB-Lite protocol’s HADDR signal.

ilm_hsize Output 3
◼ AHB-Lite protocol’s HSIZE signal.

◼ Note: in ILM interface, only the 32bits
(HSIZE is 3’b010) transactions will be issued.

ilm_hburst Output 3

◼ AHB-Lite protocol’s HBURST signal.

◼ Note: in ILM interface, only the SINGLE
(HBURST is 3’b000) transactions will be
issued.

ilm_hprot Output 4

◼ AHB-Lite protocol’s HPROT signal.

◼ Note: in ILM interface,
⚫ HPROT[3] is tied to 1, means Cacheable.
⚫ HPROT[2] is tied to 0, means

Non-bufferable.
⚫ HPROT[1] can be 1 (Machine Mode) or 0

(User Mode).
⚫ HPROT[0] can be 1 (Data access) or 0

(Instruction access).

ilm_hrdata Input 32 ◼ AHB-Lite protocol’s HRDATA signal.

ilm_hresp Input 2
◼ AHB-Lite protocol’s HRESP signal.

◼ Note: in ILM interface, only the OKAY and
ERROR response will be supported.

ilm_hready Input 1 ◼ AHB-Lite protocol’s HREADY signal.

ilm_hwrite output 1 ◼ AHB-Lite protocol’s HWRITE signal.

ilm_hmastlock output 1 ◼ AHB-Lite protocol’s HLOCK signal.

ilm_hwdata output 32 ◼ AHB-Lite protocol’s HWDATA signal.

Table 3-5 ILM SRAM signals

Signal Name Direction Width Description

ilm_cs output 1 ◼ SRAM’s CS signal.

ilm_addr output
Depends on
configuration

◼ SRAM’s ADDR signal.

ilm_byte_we output 4 ◼ SRAM’s WEM signal.

ilm_wdata output 32 ◼ SRAM’s RAM_IN signal.

ilm_rdata input 32 ◼ SRAM’s RAM_OUT signal.

3.4.1.2 DLM Master Interface

DLM interface can be configured as AHB-Lite or SRAM protocol.

◼ If it is configured as AHB-Lite, the signal list is as shown in Table 3-6.

 Page 31

◼ If it is configured as SRAM, the signal list is as shown in Table 3-7.

Table 3-6 DLM AHB-Lite signals

Signal Name Direction Width Description

dlm_htrans Output 2
◼ AHB-Lite protocol’s HTRANS signal.

◼ Note: in DLM interface, only the IDLE and
NONSEQUENTIAL transactions will be issued.

dlm_hwrite Output 1 ◼ AHB-Lite protocol’s HWRITE signal.

dlm_haddr Output
Depends on
configuration

◼ AHB-Lite protocol’s HADDR signal.

dlm_hsize Output 3
◼ AHB-Lite protocol’s HSIZE signal.

◼ Note: in DLM interface, the 8bits, 16bits or
32bits transactions will be issued.

dlm_hburst Output 3
◼ AHB-Lite protocol’s HBURST signal.

◼ Note: in DLM interface, only the SINGLE
(HBURST is 3’b000) transactions will be issued.

dlm_hprot Output 4

◼ AHB-Lite protocol’s HPROT signal.

◼ Note: in DLM interface,
⚫ HPROT[3] is tied to 1, means Cacheable.
⚫ HPROT[2] is tied to 0, means

Non-bufferable.
⚫ HPROT[1] can be 1 (Machine Mode) or 0

(User Mode).
⚫ HPROT[0] is tied to 1 (Data access).

dlm_hmastlock output 1 ◼ AHB-Lite protocol’s HLOCK signal.

dlm_master Output 2

◼ This is not AHB-Lite standard signal.

◼ Note: in DLM interface, the value of this signal
can be 2’b01 (Data access under debug mode) or
2’b00 (Regular data access).

dlm_hwdata Output 32 ◼ AHB-Lite protocol’s HWDATA signal.

dlm_hrdata Input 32 ◼ AHB-Lite protocol’s HRDATA signal.

dlm_hresp Input 2
◼ AHB-Lite protocol’s HRESP signal.

◼ Note: in DLM interface, only the OKAY and
ERROR response will be supported.

dlm_hready Input 1 ◼ AHB-Lite protocol’s HREADY signal.

Table 3-7 DLM SRAM signals

Signal Name Direction Width Description

dlm_cs output 1 ◼ SRAM’s CS signal.

dlm_addr output
Depends on
configuration

◼ SRAM’s ADDR signal.

dlm_byte_we output 4 ◼ SRAM’s WEM signal.

 Page 32

dlm_wdata output 32 ◼ SRAM’s RAM_IN signal.

dlm_rdata input 32 ◼ SRAM’s RAM_OUT signal.

3.4.2. MEM Interface

MEM interface is used to access system memory for instruction and data. MEM interface is

AHB-Lite protocol interface as shown in Table 3-8.

Table 3-8 MEM signals

Signal Name Direction Width Description

htrans Output 2

◼ AHB-Lite protocol’s HTRANS signal.

◼ Note: in MEM interface, if there is no Cache configured
in the core, then only the IDLE and NONSEQUENTIAL
transactions will be issued; if there are Cache configured,
then there could be BUSY and SEQUENTIAL
transactions.

hwrite Output 1 ◼ AHB-Lite protocol’s HWRITE signal.

haddr Output 32 ◼ AHB-Lite protocol’s HADDR signal.

hsize Output 3
◼ AHB-Lite protocol’s HSIZE signal.

◼ Note: in MEM interface, the 8bits, 16bits or 32bits
transactions will be issued.

hburst Output 3

◼ AHB-Lite protocol’s HBURST signal.

◼ Note: in MEM interface,
⚫ If the instruction fetch transaction is not from

Cache miss, it is SINGLE (HBURST is 3’b000).
⚫ If the data access transaction is not from Cache

miss, it is INCR (HBURST is 3’b001).
⚫ If the instruction fetch or data access transaction is

from Cache miss, it is INCR8 (HBURST is 3’b101).

hprot Output 4

◼ AHB-Lite protocol’s HPROT signal.

◼ Note: in MEM interface,
⚫ HPROT[3] is 1 (Cacheable) if the transaction is from

Cache miss; otherwise is 0 (Non-Cacheable).
⚫ HPROT[2] is 1 (Bufferable) if the transaction is

from Cache miss; otherwise is 0 (Non-Bufferable).
⚫ HPROT[1] can be 1 (Machine Mode) or 0 (User

Mode).
⚫ HPROT[0] can be 1 (Data access) or 0 (Instruction

fetch).

hmastlock output 1 ◼ AHB-Lite protocol’s HLOCK signal.

master Output 2

◼ This is not AHB-Lite standard signal.

◼ Note: in MEM interface, the value of this signal can be
2’b01 (Data access under debug mode), 2’b00 (Regular
data access), or 2’b10 (Regular instruction fetch).

 Page 33

hwdata Output 32 ◼ AHB-Lite protocol’s HWDATA signal.

hrdata Input 32 ◼ AHB-Lite protocol’s HRDATA signal.

hresp Input 2
◼ AHB-Lite protocol’s HRESP signal.

◼ Note: in DLM interface, only the OKAY and ERROR
response will be supported.

hready Input 1 ◼ AHB-Lite protocol’s HREADY signal.

3.4.3. PPI Interface

The configurable PPI (Private Peripheral Interface) is used to access private peripherals. PPI is

APB protocol interface as shown in Table 3-9.

Table 3-9 PPI signals

Signal Name Direction Width Description

ppi_paddr Output 32 ◼ APB protocol’s PADDR signal.

ppi_pwrite Output 1 ◼ APB protocol’s PWRITE signal.

ppi_psel Output 1 ◼ APB protocol’s PSEL signal.

ppi_dmode
Output

1
◼ This is not APB standard signal, indicating the

transaction is accessed from debug mode.

ppi_penable Output 1 ◼ APB protocol’s PENABLE signal.

ppi_pprot output 3 ◼ APB protocol’s PPROT signal.

ppi_pstrobe output 4 ◼ APB protocol’s PSTRRB signal.

ppi_pwdata Output 32 ◼ APB protocol’s PWDATA signal.

ppi_prdata Input 32 ◼ APB protocol’s PRDATA signal.

ppi_pready Input 1 ◼ APB protocol’s PREADY signal.

ppi_pslverr Input 1 ◼ APB protocol’s PSLVERR signal.

3.4.4. FIO Interface

The configurable FIO (Fast-IO) interface is used to access private fast peripherals, e.g., GPIO for

fast IO manipulation. FIO is simple zero-cycle protocol interface as shown in Table 3-10.

 Page 34

Table 3-10 FIO signals

Signal Name Direction Width Description

fio_cmd_valid Output 1 ◼ Indicate this is a valid transaction.

fio_cmd_addr Output 32 ◼ Indicate the address of transaction.

fio_cmd_read Output 1 ◼ Indicate this is a read (1’b1) or write (1’b0).

fio_cmd_dmode Output 1
◼ Indicate this transaction is accessed under debug

mode.

fio_cmd_mmode Output 1
◼ Indicate this transaction is accessed under

machine mode.

fio_cmd_wdata Output 32 ◼ Indicate the write data of transaction.

fio_cmd_wmask Output 4 ◼ Indicate the write mask of transaction.

fio_rsp_rdata Input 32
◼ The read-data returned from peripheral.

◼ Note: this read-data must take effect at the same
cycle as fio_icb_cmd_valid is high.

fio_rsp_err Input 1
◼ The error flag returned from peripheral.

◼ Note: this read-data must take effect at the same

cycle as fio_icb_cmd_valid is high.

3.5. NICE Interface

The configurable NICE interface is used to allow user to extend the custom instructions

according to their applications. Please refer to another document <Nuclei_NICE_Extension> for

the details. User can easily get the copy from “Nuclei User Center” website

http://user.nucleisys.com.

3.6. Trace Interface

The Trace interface is used to output the internal key information from the Core, as shown in

Table 3-11.

Table 3-11 Trace Interface signals

Signal Name Direction Width Description

http://user.nucleisys.com/

 Page 35

trace_ivalid Output 1 ◼ Indicate there is a valid instruction is committing
or entering trap (exception, NMI, and interrupts).

trace_iexception Output 1
◼ Indicating the Core is entering exception or NMI

mode.

trace_interrupt Output 1 ◼ Indicating the Core is entering interrupt mode.

trace_cause Output 32 ◼ Indicating the cause of trap (same as mcause).

trace_tval Output 32 ◼ Indicating the value of exception (same as mtval).

trace_iaddr Output 32 ◼ Indicating the PC of current instruction.

trace_instr Output 32
◼ Indicating the instruction code of current

instruction.

trace_priv Output 2 ◼ Indicating the current privilege mode.

3.7. I-Cache SRAM Interface

The I-Cache SRAM interface is the interface of Data RAM and Tag RAM used in Instruction

Cache, as shown in Table 3-12.

Table 3-12 I-Cache SRAM Interface

Signal Name Direction Width Description

icache_disable_init Input 1

◼ If this signal is 0, normally after reset, the
I-Cache’s Tag RAM will be cleared to zero
with hundreds or thousands of cycles
(depends on the cache size).

◼ If this signal is 1, then the I-Cache’s Tag RAM
clear-to-zero operations will be skipped.

icache_tag0_cs Output 1 ◼ CS signal of Tag RAM0.

icache_tag0_we Output 1 ◼ Write enable of Tag RAM0, not support the
byte enable.

icache_tag0_addr Output
Depends on
configuration

◼ Address of Tag RAM0, the width is
N300_CFG_ICACHE_ADDR_WIDTH-6

icache_tag0_wdata Output
Depends on
configuration

◼ Write data of Tag RAM0, the width is
34-N300_CFG_ICACHE_ADDR_WIDTH

icache_tag0_rdata Input
Depends on
configuration

◼ Read data of Tag RAM0, the width is
34-N300_CFG_ICACHE_ADDR_WIDTH

icache_data0_cs Output 1 ◼ CS signal of Data RAM0.

icache_data0_wem Output 4
◼ Write enable of Data RAM0, support the byte

enable.

icache_data0_addr Output
Depends on
configuration

◼ Address of Data RAM0, the width is
N300_CFG_ICACHE_ADDR_WIDTH-3

icache_data0_wdata Output 32 ◼ Write data of Data RAM0.

icache_data0_rdata Input 32 ◼ Read data of Data RAM0.

 Page 36

icache_tag1_cs Output 1 ◼ CS signal of Tag RAM1.

icache_tag1_we Output 1
◼ Write enable of Tag RAM1, not support the

byte enable.

icache_tag1_addr Output
Depends on
configuration

◼ Address of Tag RAM1, the width is
N300_CFG_ICACHE_ADDR_WIDTH-6

icache_tag1_wdata Output
Depends on
configuration

◼ Write data of Tag RAM1, the width is
34-N300_CFG_ICACHE_ADDR_WIDTH

icache_tag1_rdata Input
Depends on
configuration

◼ Read data of Tag RAM1, the width is
34-N300_CFG_ICACHE_ADDR_WIDTH

icache_data1_cs Output 1 ◼ CS signal of Data RAM1.

icache_data1_wem Output 1
◼ Write enable of Data RAM1, support the byte

enable.

icache_data1_addr Output
Depends on
configuration

◼ Address of Data RAM1, the width is
N300_CFG_ICACHE_ADDR_WIDTH-3

icache_data1_wdata Output 32 ◼ Write data of Data RAM1.

icache_data1_rdata Input 32 ◼ Read data of Data RAM1.

3.8. Other Functional Interface

Table 3-13 Other Interface signals

Signal Name Direction Width Description

tx_evt Output 1

◼ N300 Series Core use this txevt output a pulse signal as
the transmitting Event signal.

◼ Please refer to “Nuclei_RISCV_ISA_Spec” for more
details of CSR register txevt.

rx_evt Input 1
◼ The receiving Event as the event to wake up Core from

WFE mode.

◼ Please refer to Section 2.13 for more details of WFE.

mtime_toggle_a Input 1

◼ The mtime_toggle_a is a periodic pulse signal (normally

as System Tick) from the SoC system, and used to drive

the counter of the internal TIMER unit inside the Core.

◼ Note:
⚫ This signal is treated as an asynchronous input

signal, and is synchronized within the Core (using
several DFF synchronizers).

⚫ After the synchronization, both the rising edge and
falling edge of the signal are sampled by the
core_clk_aon of the Core, and any detected edge
will trigger the TIMER counter to increment.

⚫ It is recommended that use the output of the
register driven by the “slow clock” (e.g., rtc_clk,
whose frequency is the divided frequency of
core_clk_aon) as the input of this signal. Then the
self-increment frequency is equal to the frequency

 Page 37

of the “slow clock”, as shown in the Figure 3-3.
Hence, the lower the frequency of the slow clock,
the lower the self-increment frequency of the
internal timer, the lower the dynamic power
consumption.

dbg_toggle_a Input 1

◼ The dbg_toggle_a is a periodic pulse signal from the

SoC system, and used to drive the time-out counter of

the DEBUG unit inside the Core.

◼ The time-out counter of DEBUG unit is used to protect

the case that if the JTAG Debugger Probe is

unexpectedly pulled out which leave the DEBUG unit in

an uncertain state.

◼ Note:
⚫ This DEBUG time-out protection feature is

configurable. Hence, this signal will only be there is
this feature is configured.

⚫ This signal is treated as an asynchronous input
signal, and is synchronized within the Core (using
several DFF synchronizers).

⚫ In order to make the time-out upper limit to
around 170-320ms, it is recommended to use
25kHz~50kHz system real-time-clock as the slow
clock to generate this dbg_toggle_a signal, the

generation scheme of which is similar to Figure
3-3.

hart_id Input 32

◼ The Core’s HART ID indication signal, when integration
in SoC, this input can be tied to a specific constant
value, and the value of it will be reflected in CSR register
mhartid inside the Core.

◼ In single Core case, this signal should be tied as zero.

reset_vector Input 32

◼ This signal is to indicate the PC value of the first
instruction to be fetched after reset.

◼ User can use this signal at SoC level to control the PC
address of first instruction executed after reset.

hart_halted Output 1
◼ If this output signal is 1, it is indicating the Core is under

debug mode.

i_dbg_stop input 1

◼ If this input signal is 1, then the Core’s Debug
functionality will be disabled, and the external Debug
Hardware Probe cannot debug the Core through JTAG
interface.

sysrstreq output 1

◼ This output signal is the System Reset request generated
from the Core. The SoC integrator can use this signal to
trigger the Core’s core_reset_n (Note: please must not
trigger por_reset_n) to reset the Core except the JTAG
logics.

core_wfi_mode Output 1

◼ If this signal is 1, then indicating the Core is under sleep
mode.

◼ Please refer to Section 2.13 for more details of sleep
modes.

core_sleep_value Output 1

◼ When the core_wfi_mode signal is 1, this signal is to
indicate the shallow sleep or deep sleep mode.

◼ Please refer to Section 2.13 for more details of sleep
modes.

 Page 38

Figure 3-3 mtime_toggle_a signal generation

 Page 39

4. Configurable Options

N300 Series Core is fully configurable. The configurable options are as shown in Table 4-1.

Note: about how to configure the processor IP package with GUI tools, please refer to another

document <Nuclei_N300_Integration_Guide> for the details. User can easily get the copy from

“Nuclei User Center” website http://user.nucleisys.com.

Table 4-1 The configurable option of N300 Series

Categories Macro Description

User Mode N300_CFG_HAS_UMODE
◼ This Macro configures to have the user

mode.

TEE N300_CFG_HAS_TEE
◼ This Macro configures to have the TEE

feature.

PMP

N300_CFG_HAS_PMP

◼ This Macro configures to have the PMP
feature.

◼ Note: this option only appeared if the
User Mode have been configured.

N300_CFG_PMP_ENTRY_NUM

◼ This Macro configures the PMP entries
number.
⚫ 8: Means PMP has 8 entries.
⚫ 16: Means PMP has 16 entries.

Debug Features

N300_CFG_HAS_DEBUG

◼ This Macro configures to have the
Debug functionalities.

◼ Note: the Debug unit cost about 4K
Gates resource.

N300_CFG_DEBUG_BASE_ADDR

◼ This Macro to configure the base
address of the Debug unit.

◼ Note: the Debug unit will occupy 4K
address space starting from its base
address.

N300_CFG_DEBUG_TRIGM_NUM

◼ This Macro to configure the number of
Hardware Trigger (2/4/8).

◼ Note: each Trigger cost about 64bits
DFFs resource.

N300_CFG_DEBUG_PROGBUF_SIZE ◼ This Macro to configure the number of
Program Buffer (2~16).

N300_CFG_HAS_SBA

◼ This Macro configures to have SBA
(System Bus Access) feature, with this
feature the Debugger can directly
access the memory without halting the
Core.

N300_CFG_DEBUG_TIMEOUT
◼ This Macro configures to have

“DEBUG time-out protection” feature.
Please refer to the dbg_toggle_a signal

http://user.nucleisys.com/

 Page 40

in Table 3-13 for more details of this
feature.

N300_CFG_DEBUG_COUNTLEN

◼ This Macro to configure the time-out
counter’s width of “DEBUG time-out
protection” feature.

◼ Note: the timer-out upper limit is
calculated by
2^N300_CFG_DEBUG_COUNTLEN/
(2*FREQ_dbg_toggle_a). User should
configure this Macro to make the
upper limit to around 170-320ms.

I-Cache

N300_CFG_HAS_ICACHE ◼ This Macro configures to have I-Cache.

N300_CFG_ICACHE_ADDR_WIDTH

◼ This Macro to configure the I-Cache
Size.

◼ It is using the ADDR_WIDTH as the
Cache Size metric, for example, if the
Cache Size wants to be 1Kbytes, then
the ADD_WIDTH should be
configured as 10.

N300_CFG_SCRATCHPAD_MODE

◼ This Macro to configure the I-Cache
has Scratchpad Mode. Please refer to
Section 2.4 for the details of
Scratchpad Mode.

◼ Note: this configuration only allowed
when ILM is not configured.

N300_CFG_SCRATCHPAD_BASE_AD
DR

◼ This Macro to configure the base
address of the Scratchpad.

Local Memory

N300_CFG_HAS_ILM ◼ This Macro configures to have ILM.

N300_CFG_LM_ITF_TYPE_AHBL
N300_CFG_LM_ITF_TYPE_SRAM

◼ This Macro to configure the interface
protocol of LM interfaces as the
AHB-Lite or SRAM Style.

N300_CFG_ILM_BASE_ADDR
◼ This Macro to configure the base

address of the ILM.

N300_CFG_ILM_ADDR_WIDTH

◼ This Macro to configure the address
space of ILM.

◼ For example, if the ADDR_WIDTH is
20, and the BASE_ADDR is
0x1000_0000, then the address space
of ILM is 0x1000_0000
~0x100F_FFFF.

N300_CFG_HAS_DLM ◼ This Macro configures to have DLM.

N300_CFG_DLM_BASE_ADDR
◼ This Macro to configure the base

address of the DLM.

N300_CFG_DLM_ADDR_WIDTH

◼ This Macro to configure the address
space of DLM.

◼ For example, if the ADDR_WIDTH is
20, and the BASE_ADDR is
0x1000_0000, then the address space
of DLM is 0x1000_0000
~0x100F_FFFF.

N300_CFG_ILM_DLM_EXCLUSIVE
◼ If this option is configured, the Core

will guarantee the DLM AHB-Lite and
ILM AHB-Lite interfaces will not issue

 Page 41

transactions at the same cycle.

◼ Please refer to Section 3.4.1 for more
details.

N300_CFG _LSU_ACCESS_ILM

◼ If this option is configured, the Data
accessing can directly goes to ILM
interface if the accessing address is
within ILM space.

◼ Please refer to Section 2.6 for more
details.

PPI

N300_CFG_HAS_PPI ◼ This Macro configures to have PPI.

N300_CFG_PPI_BASE_ADDR
◼ This Macro to configure the base

address of the PPI interface.

N300_CFG_PPI_ADDR_WIDTH

◼ This Macro to configure the address
space of PPI.

◼ For example, if the ADDR_WIDTH is
20, and the BASE_ADDR is
0x1000_0000, then the address space
of PPI is 0x1000_0000
~0x100F_FFFF.

FIO

N300_CFG_HAS_FIO ◼ This Macro configures to have FIO.

N300_CFG_FIO_BASE_ADDR
◼ This Macro to configure the base

address of the FIO interface.

N300_CFG_FIO_WIDTH

◼ This Macro to configure the address
space of FIO.

◼ For example, if the ADDR_WIDTH is
20, and the BASE_ADDR is
0x1000_0000, then the address space
of FIO is 0x1000_0000
~0x100F_FFFF.

ECLIC

N300_CFG_CLIC_BASE_ADDR

◼ This Macro to configure the base
address of the ECLIC. Please
refer to Section 2.6 for more
details.

N300_CFG_CLIC_IRQ_NUM
◼ This Macro to configure the number of

external interrupts; it can be up to
1005 interrupts.

N300_CFG_CLICINTCTLBITS

◼ This Macro to configure the bits width
(range from 1 to 8) of level

◼ registers in ECLIC.

◼ For example, if this Macro is
configured as 3, then ECLIC can
support 8 levels; if this Macro is
configured as 8, then ECLIC can
support 256 levels.

N300_CFG_CLIC_FLOP_OUT

◼ This Macro to add one more register
flop stage at the output of ECLIC to
easy the timing of interrupt
arbitrations, but added 1 more cycle for
interrupt latency.

TIMER N300_CFG_TMR_BASE_ADDR
◼ This Macro to configure the base

address of the TIMER. Please refer to
Section 2.6 for more details.

Timing Boost N300_CFG_HAS_PREFETCH ◼ If this Macro is configured, then

 Page 42

I-Fetch unit will be equipped with a
Prefetch Unit for ILM/I-Cache/BIU.

◼ Note: this option will help the timing
path of “from ILM/I-Cache/BIU to
Instruction-fetch interface”.

◼ Note: this option will add around 2K
Gates resource and around 8%
performance drop.

N300_CFG_DELAY_BRANCH_FLUSH

◼ If this Macro is configured, then the
branch mis-prediction flush will be
added with 1 more cycle penalty, it will
help the timing path of “from ALU to
branch-resolve to Instruction-fetch
interface”.

NICE

N300_CFG_HAS_NICE

◼ This Macro configures to have NICE
feature, to allow user to extend their
custom instructions.

◼ Note: if this Macro is configured, then
N300_CFG_REGFILE_2WP must
also be configured.

N300_CFG_NICE_64BITS

◼ If the DSP is configured, then this
Macro configures to have NICE to
support 64bits wide operands.

FPU

N300_CFG_FPU_SINGLE
◼ This Macro configures to have

single-precision floating point support.

N300_CFG_FPU_DOUBLE

◼ This Macro configures to have
double-precision floating point
support.

N300_CFG_3CYC_FPU

◼ This Macro configures to have floating
point MAC unit as 3 cycles latency
(better timing and worse
performance), otherwise it is 2 cycles.

DSP

N300_CFG_HAS_DSP
◼ This Macro configures to have

packed-SIMD DSP support.

N300_CFG_HAS_DSP_DEDICATE_M

UL

◼ This Macro configures to make DSP
have dedicated MUL unit, to enhance
timing with 6K gatecount cost added.

	Copyright Notice
	Contact Information
	Revision History
	Table of Contents
	List of Tables
	List of Figures
	1. Overview
	1.1. Feature List
	1.2. Supported Instruction Set and Privileged Architecture
	1.3. Top Diagram
	1.4. Different Cores of N300 Series

	2. Functional Introductions
	2.1. Clock Domains
	2.2. Power Domains
	2.3. Core Interfaces
	2.4. Memory Resources
	2.5. Private Peripherals
	2.6. Address Spaces of Interfaces and Private Peripherals
	2.7. Debug Support
	2.8. Interrupt and Exception Mechanism
	2.9. NMI Mechanism
	2.10. Control and Status Registers (CSRs)
	2.11. Performance Monitor
	2.12. TIMER Unit
	2.13. Low-Power Mechanism
	2.13.1. Clock Control of Entering Sleep Modes
	2.13.2. Clock Control of Exiting Sleep Mode

	2.14. Physical Memory Protection
	2.15. FPU Feature
	2.16. DSP Feature
	2.17. NICE Feature
	2.18. TEE Feature

	3. Core Interfaces
	3.1. Clock and Reset Interface
	3.2. 4-wire and 2-wire JTAG Debug Interface
	3.3. Interrupt Interface
	3.4. Bus Interfaces
	3.4.1. ILM and DLM Interface
	3.4.1.1 ILM Master Interface
	3.4.1.2 DLM Master Interface

	3.4.2. MEM Interface
	3.4.3. PPI Interface
	3.4.4. FIO Interface

	3.5. NICE Interface
	3.6. Trace Interface
	3.7. I-Cache SRAM Interface
	3.8. Other Functional Interface

	4. Configurable Options

